1. Trang chủ
  2. » Giáo Dục - Đào Tạo

The double integral of over the rectangle is if this limit exists evaluate double integral

22 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề The Double Integral of Over the Rectangle is If This Limit Exists Evaluate Double Integral
Người hướng dẫn Phan Thị Khánh Vân
Trường học Ho Chi Minh City University of Technology
Chuyên ngành Calculus 2
Thể loại Report
Năm xuất bản 2022
Thành phố Ho Chi Minh City
Định dạng
Số trang 22
Dung lượng 6,18 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

FUNCTION SEVERAL VARIABLES .... 13 2 Application of function several variable ..... EVALUATE DOUBLE INTEGRAL We shall evaluate integral , where , then PROPORTIES:... APPLICATION OF DOUB

Trang 1

HO CHI MINH CITY UNIVERSITY OF

TECHNOLOGY FACULTY OF APPLIED SCIENCE

*******

REPORT CALCULUS 2 CLASS: CC07 – GROUP 6

INSTRUCTOR : PHAN THỊ KHÁNH VÂN

Trang 2

2151247

Trang 3

TABLE OF CONTENTS

Work Assignment 2

TABLE OF CONTENTS 3

I DOUBLE INTERGRALS 4

1) Theorems 4

2) Application of double integral 7

II DERIVATIVE 10

1) Theorems 10

2) Application of derivative 11

III FUNCTION SEVERAL VARIABLES 13

1) Theorems 13

2) Application of function several variable 20

Trang 4

DEFINITION

The double integral of over the rectangle is

if this limit exists

EVALUATE DOUBLE INTEGRAL

We shall evaluate integral , where , then

PROPORTIES:

Trang 6

MORE THEOREM:

Trang 7

APPLICATION OF DOUBLE INTERGRAL:

A Caculate the area of region R

Find the volume V of the solid S that is bounded by the elliptic paraboloid , the planes x=3 and y=3 , and the three coordinate planes

Solution

First notice the graph of the surface in Figure a and above the square region

However , we need the volume of the solid bounded by the elliptic paraboloid

, the planes x=3 and y=3 , and the three coordinate planes

Trang 8

(b) The solid S lies under the surface above the square region

Now let’s look at the graph of the surface in (b) We determine the volume V by evaluating the double integral over R2 :

=

B The mass and the center of mass

2 Find the mass and the center of mass of the lamina that occupies the region D and has the given density function ρ D is the triangular region with vertices (0,0), (2,1) and (0,3); ρ(x, y)

Trang 9

clc;

clear allall ;

fun1 = @(x,y) 1/6.*(x.*(x+y))

fun1 = @(x,y) 1/6.*(y.*(x+y))

Trang 10

PARTIAL DERIVATIVE

Trang 11

SECOND ORDER PARTIAL DERIVATIVE

Trang 12

The graph of f is a paraboloid z = 4 - x – 2y and the plane y=1 cut paraboloid by the parabol C = z = 2- x , y=1 The slope of the tangent line T with parabol C at (1,1,1) is f1 2 1 1 ’x

(1,1) = -2 Similarly, the plane x =1 cut paraboloid by the parabol C : z = 3 -2y , x = 1 2 2

The slope of the tangent line T with parabol C at (1,1,1) is f (1,1) = -4.2 2 ’y

b The geometry meaning of derivative in a specific direction :

Trang 13

FUNCTION OF SEVERAL VARIABLES THEOREMS

Trang 16

QUADRATIC SURFACES

Trang 20

APPLICATION FUNCTION OF SEVERAL

VARIABLES

A.The range R of the trajectory

1.The range R of the trajectory of the projectile fired with initial velocity from the barrel made with the horizontal line at an angle is determined by the formula

vo = input("Input the initial velocity");

phi = input("Input the angle");

g = 9.8

R = (v0^2 * sin(2*phi))/g

Trang 21

To find the hypotenuse by Pythagorean formula

To find the length of leg by Pythagorean formula

To find the length of leg by Pythagorean formula

clc

clear all

syms choice

disp("Pythagorean theorem for finding hypotenuse/leg")

Choice = input("Enter you choice hypotenuse(0)/leg(1), input 0

or 1: ")

for choice = 0

leg1 = input("input your first leg: ")

leg2 = input("input your second leg: ")

hypotenuse = sqrt(leg1^2+leg2^2)

for choice = 1

h = input("input your hypotenuse: ")

leg = input("input your given leg: ")

remainleg = sqrt(h^2-leg^2)

C uniform accelerated motion problem

3 Calculate displacement related to initial velocity, acceleration and time

Trang 22

We have displacement formula in uniform acceleration motion

With is the displacement

v0 = input("Input your inital velocity: ")

a = input("Input your acceleration: ")

t = input("Input your time: ")

s = v0*t + (a*t^2)/2

Ngày đăng: 23/05/2023, 15:25

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w