IEC TR 61 000 1 7 Edition 1 0 201 6 02 TECHNICAL REPORT Electromagnetic compatibility (EMC) – Part 1 7 General – Power factor in single phase systems under non sinusoidal conditions IE C T R 6 1 0 0 0[.]
Trang 1IEC TR 61 000- 1 - 7
Edit io 1.0 2 16-0
Elect romagnetic compat ibi ity (EMC) –
Part 1- 7: General – Pow er factor in single- phase sy st ems under non- sinusoidal
Trang 2THIS PUBLICATION IS COPYRIGHT PROT CTED
Copyr ight © 2 16 IEC, Ge e a, Switzer la d
Al r i hts r es r ve Unle s oth r wis s e ifi d, n p r t of this p blc tio ma b r epr od c d or uti z d in a y for m
or b a y me n ,ele tr onic or me h nic l in lu in p oto o yin a d microfim, with ut p r mis io in wr itin fr om
eith r IEC or IEC's memb r Natio al Commite in th c u tr y of th r eq e ter If y u h v a y q e tio s a o t IEC
c p r i ht or h v a e q iry a o t o tainin a ditio al r i hts to this p blc tio , ple s c nta t th a dr es b low or
y ur lo al IEC memb r Natio al Commite for fur th r infor matio
Th Inter natio al Ele tr ote h ic l Commis io (IEC) is th le din glo al or ga iz tio th t pr ep r es a d p bls e
Intern tio al Sta d r ds for al ele tr i al ele tr onic a d relate te h olo ie
A bout IEC publc tion
Th te h ic l c nte t of IEC p blc tio s is k pt u d r c n ta t r eview b th IEC Ple s ma e s r e th t y u h v th
late t e itio , a c r r ig n a or a ame dme t mig t h v b e p bls e
IEC Catalo u - webstore.e c /cat alo u
Th st an -alo e a plc at io for c on ult in t he e t ire
biblo ra hic al informat io o IEC Int ern t io al St an ard ,
Te h ic al Sp cific at io s, Tec hnic al R ep rt s a d ot her
d c ume t s A v aia le for PC, Ma OS, A ndroid Ta let s a d
iPa
IEC publc t ion s arc - w w w.e c /s archpub
Th a v anc ed s arc h e a le t o fin IEC p blc t io s b a
v riety of c riteria (efere c n mb r, text, t ec hnic l
c mmit t ee,…) It als giv es informat io o projec t s, re lac ed
Ele tro edia - www.ele tro edia.org
Th world's le din o ln dic t io ary of elec t ro ic a d
elec t ric l t erms c ont ainin 2 0 0 t erms a d d finit io s in
En ls a d Fre c , wit h e uiv le t t erms in 15 a dit io al
la g a e A ls k nown a t he Int ern t io al Ele t rot ec hnic l
V oc ab lary (IEV ) o ln
IEC Glos ar y - st d.e c /glos ary
6 0 0 elec t rote h ic l t ermin lo y e t rie in En ls a d
Fre c ex t rac t ed fom t he Terms a d Definit io s cla s of
IEC p blc t io s is u d sin e 2 0 Some e trie h v b e
c lec t ed fom e rler p blc at io s of IEC TC 3 , 7 , 8 a d
CIS R
IEC Cu t omer Servic Ce tre - webst ore.e c /cs
If y ou wis t o giv u your fe d ac k o t his p blc t io or
n e furt her a sist an e,ple s c ont ac t t he Cu t omer Servic
Ce t re: c sc@ie c h
Trang 3IEC TR 61000- 1 - 7
Edit io 1.0 2 16-0
Elect romagnetic compatibi it y (EMC) –
Part 1- 7: General – Pow er fact or in single- phase sy st ems under non- sinusoidal
Trang 4CONTENTS
FOREWORD 4
INTRODUCTION 6
0.1 Series overview 6
0.2 Purp se of this doc ment 6
1 Sco e 8
2 Normative ref eren es 8
3 Terms an def i ition 8
4 General 14 5 Electric p wer q antities u der non-sin soidal con ition 15 5.1 Voltages an c r ents 15 5.1.1 In tantane u values 15 5.1.2 Ref eren e f un amental comp nents 16 5.1.3 Total distortion contents 16 5.1.4 RMS values of the voltage an c r ent 16 5.1.5 RMS values of total distortion contents 17 5.1.6 DC ratios 17 5.1.7 Total distortion ratios 17 5.2 In tantane u p wer 18 5.3 Def i ition related to the active p wer 18 5.3.1 Active p wer 18 5.3.2 DC p wer 18 5.3.3 Fu damental active power 19 5.3.4 Distortion active p wer 19 5.4 Def i ition related to the a p rent p wer 19 5.4.1 Ap arent p wer 19 5.4.2 Fu damental a p rent p wer 2
5.5 Def i ition related to the p wer f actor 2
5.5.1 Power f actor 2
5.5.2 Fu damental p wer f actor 21
5.5.3 Non-f un amental p wer f actor 21
5.6 Summary 21
6 Electric p wer q antities with a sin soidal voltage an a c r ent distorted only with harmonic 22 6.1 Voltages an c r ents 2
6.1.1 In tantane u values 2
6.1.2 Fu damental comp nents 2
6.1.3 Harmonic content of the c r ent 2
6.1.4 RMS values of the voltage an c r ent 2
6.1.5 RMS value of the harmonic content of the c r ent 2
6.1.6 Total harmonic ratio of the c r ent 2
6.1.7 Fu damental f actor 2
6.2 In tantane u p wer 2
6.3 Active p wer 2
6.4 Def i ition related to the a p rent p wer 2
6.4.1 Ap arent p wer 2
Trang 56.4.2 Fu damental a p rent p wer 2
6.5 Def i ition related to the p wer f actor 2
6.5.1 Power f actor 2
6.5.2 Fu damental p wer f actor 2
6.5.3 Non-f un amental p wer f actor 2
6.6 Summary 2
An ex A (normative) Electric p wer q antities u der sin soidal con ition 2
A.1 In tantane u values of the voltage an c r ent 2
A.2 In tantane u p wer 2
A.3 Active p wer 3
A.4 Re ctive p wer 3
A.5 Ap arent p wer 3
A.6 Power f actor 30 An ex B (inf ormative) Fu damental active f actor 3
B.1 Fu damental active f actor an its u e 3
B.2 Con umer con ention 3
Bibl ogra h 3
Fig re A.1 – Il u tration of the displacement an le (φ) when the voltage le d the c r ent, φ > 0 2
Fig re A.2 – Il u tration of the displacement an le (φ) when the voltage lag the c r ent, φ < 0 2
Fig re B.1 – Con umer sig con ention of the f un amental active f actor, f un amental active p wer an f un amental re ctive p wer 3
Ta le 1 – Summary of the p wer q antities u der non-sin soidal con ition 21
Ta le 2 – Summary of the p wer q antities with a sin soidal voltage an a c r ent
distorted only with harmonic 27
Trang 6INTERNATIONAL ELECTROTECHNICAL COMMISSION
1 Th Intern tio al Ele trote h ic l Commis io (IEC) is a worldwid org niz tio for sta d rdiz tio c mprisin
al n tio al ele trote h ic l c mmite s (IEC Natio al Commite s) Th o je t of IEC is to promote
intern tio al c -o eratio o al q e tio s c n ernin sta d rdiz tio in th ele tric l a d ele tro ic field To
this e d a d in a ditio to oth r a tivitie , IEC p bls e Intern tio al Sta d rd , Te h ic l Sp cific tio s,
Te h ic l Re orts, Pu lcly Av ia le Sp cific tio s (PAS) a d Guid s (h re fter refere to a “IEC
Pu lc tio (s)”) Th ir pre aratio is e tru te to te h ic l c mmite s; a y IEC Natio al Commite intere te
in th s bje t d alt with ma p rticip te in this pre aratory work Intern tio al g v rnme tal a d n
n-g v rnme tal org niz tio s laisin with th IEC als p rticip te in this pre aratio IEC c la orate clo ely
with th Intern tio al Org niz tio for Sta d rdiz tio (ISO) in a c rd n e with c n itio s d termin d b
a re me t b twe n th two org niz tio s
2) Th formal d cisio s or a re me ts of IEC o te h ic l maters e pre s, a n arly a p s ible, a
intern tio al c n e s s of o inio o th rele a t s bje ts sin e e c te h ic l c mmite h s re re e tatio
fom al intere te IEC Natio al Commite s
3) IEC Pu lc tio s h v th form of re omme d tio s for intern tio al u e a d are a c pte b IEC Natio al
Commite s in th t s n e Whie al re s n ble eforts are ma e to e s re th t th te h ic l c nte t of IEC
Pu lc tio s is a c rate, IEC c n ot b h ld re p n ible for th wa in whic th y are u e or for a y
misinterpretatio b a y e d u er
4) In ord r to promote intern tio al u iformity, IEC Natio al Commite s u d rta e to a ply IEC Pu lc tio s
tra s are tly to th ma imum e te t p s ible in th ir n tio al a d re io al p blc tio s An div rg n e
b twe n a y IEC Pu lc tio a dth c re p n in n tio al or re io al p blc tio s al b cle rly in ic te in
th later
5) IEC its lf d e n t pro id a y ate tatio of c nformity In e e d nt c rtific tio b die pro id c nformity
a s s me t s rvic s a d, in s me are s, a c s to IEC mark of c nformity IEC is n t re p n ible for a y
s rvic s c rie o t b in e e d nt c rtific tio b die
6) Al u ers s o ld e s re th t th y h v th late t e itio of this p blc tio
7) No la i ty s al ata h to IEC or its dire tors, emplo e s, s rv nts or a e ts in lu in in ivid al e p rts a d
memb rs of its te h ic l c mmite s a d IEC Natio al Commite s for a y p rs n l injury, pro erty d ma e or
oth r d ma e of a y n ture wh ts e er, wh th r dire t or in ire t, or for c sts (in lu in le al fe s) a d
e p n e arisin o t of th p blc tio , u e of, or rela c u o , this IEC Pu lc tio or a y oth r IEC
Pu lc tio s
8) Ate tio is drawn to th Normativ refere c s cite in this p blc tio Us of th refere c d p blc tio s is
in is e s ble for th c re t a plc tio of this p blc tio
9) Ate tio is drawn to th p s ibi ty th t s me of th eleme ts of this IEC Pu lc tio ma b th s bje t of
p te t rig ts IEC s al n t b h ld re p n ible for id ntifyin a y or al s c p te t rig ts
The main tas of IEC tec nical commit e s is to pre are International Stan ard However, a
tec nical commite may pro ose the publ cation of a tec nical re ort when it has col ected
data of a dif f erent kin f rom that whic is normal y publ s ed as an International Stan ard, f or
example "state of the art"
IEC TR 610 0-1-7, whic is a Tec nical Re ort, has b en pre ared by s bcommit e 7 A:
c mp tibility
Trang 7The text of this tec nical re ort is b sed on the f ol owin doc ments:
En uiry draft Re ort o v tin
Ful inf ormation on the votin f or the a proval of this tec nical re ort can b f ou d in the
re ort on votin in icated in the a ove ta le
This publ cation has b en draf ted in ac ordan e with the ISO/IEC Directives, Part 2
A l st of al p rts in the IEC 610 0 series, publ s ed u der the general title Electroma n tic
c mp tibility (EM C), can b f ou d on the IEC we site
The commite has decided that the contents of this publ cation wi remain u c an ed u ti
the sta i ty date in icated on the IEC we site u der "ht p:/we store.iec.c " in the data
related to the sp cif i publcation At this date, the publcation wi b
Trang 8Mitigation method an devices
Part 6: Ge eric sta dards
Part 9: Mis el a eous
Eac p rt is f urther s bdivided into section whic are to b publ s ed either as international
stan ard , tec nical sp cif i ation , or as tec nical re orts
ac ordin ly (f or example, 610 0-6-1)
0.2 Purpose of this document
The prevalen e of lo d drawin non-sin soidal c r ent f rom p wer s stems req ires
Trang 9impl ed as umption of sin soidal voltage an c r ent This doc ment sp cif i al y ad res es
the terms related to the p wer f actor of eq ipment that are a pl ca le regardles of the
voltage an c r ent wavef orms
When voltages an c r ents on p wer s p ly network are p rf ectly sin soidal, cos ϕ
cor esp n s to the p wer f actor But this is not true an more when electric q antities are
distorted In some existin doc ments, cos ϕ is sti u ed as p wer f actor, le din to an
in or ect as es ment of the eq ipment imp ct to s p ly network
The purp se of this Tec nical Re ort is to give cle r inf ormation on b th comp nents in the
p wer f actor:
• the f un amental p wer f actor, whic is d e to the phase dif f eren e b twe n the voltage
an c r ent at the f un amental f req en y (cos ϕ
1, an
• the non-f un amental p wer f actor, whic is related to the distortion of the voltage an /or
c r ent
Trang 10ELECTROMAGNETIC COMPATIBILITY (EMC) –
Part 1-7: General – Power f actor in single-phase systems
under non-sinusoidal conditions
This p rt of IEC 610 0, whic is a Tec nical Re ort, provides def i ition of variou electrical
p wer q antities an the relation hip b twe n them u der non-sin soidal con ition , in order
to give cle r inf ormation on b th comp nents in the p wer f actor: the f un amental p wer
f actor, whic is d e to the phase dif f eren e b twe n the voltage an c r ent at the
f un amental f req enc , an the non-f un amental p wer f actor, whic is related to the
distortion of the voltage an /or c r ent This Tec nical Re ort is a pl ca le only to sin l
e-phase s stems
This Tec nical Re ort provides def i ition f or the thre f ol owin cases:
• the general case where the voltage an c r ent are b th distorted (Clau e 5),
• the case where the voltage is as umed to b sin soidal an the c r ent is only distorted
with harmonic comp nents (Clau e 6),
• the p rtic lar case where the voltage an c r ent are b th sin soidal (An ex A)
An ex B gives inf ormation on the f un amental active f actor, whic is u ed to des rib the
b haviour of a piece of eq ipment as a lo d or a generator
2 Normative ref erences
The f ol owin doc ments, in whole or in p rt, are normatively ref eren ed in this doc ment
an are in isp n a le f or its a pl cation For dated ref eren es, only the edition cited a pl es
For u dated ref eren es, the latest edition of the ref eren ed doc ment (in lu in an
for a time-de en ent q antity, p sitive s uare ro t of the me n value of the s uare of the
q antity taken over a given time interval
Note 1 to e try: Th ro t-me n-s u re v lu of a p rio ic q a tity is u u ly ta e o er a inte ratio interv l
th ra g of whic is th p rio multiple b a n tural n mb r
Note 2 to e try: For a sin s id l q a tity a( = Âc s(ωt
+ϑ
0), th ro t-me n-s u re v lu is A
ef
= Â/√2
Note 3 to e try: Th ro t-me n-s u re v lu of a q a tity ma b d n te b a din o e of th s b cripts ef or
rms to th s mb l of th q a tity
Trang 11Note 4 to e try: In ele tric l te h olo y, th ro t-me n-s u re v lu s of ele tric c re t i( a d v lta e u( are
u u ly d n te I a d U, re p ctiv ly
[SOURCE: IEC 6 0 0-10 :2 0 , 10 -0 -0 ]
3.2
dire t compone t
me n value of a q antity taken over a given time interval
[SOURCE: IEC 6 0 0-10 :2 0 , 10 -0 -0 , modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
3.3
sinusoidal adj
p rtainin to an alternatin q antity re resented by the prod ct of a re l con tant an a sine
or cosine f un tion whose arg ment is a l ne r f un tion of the in e en ent varia le
Note 1 to e try: Th re l c n ta t ma b a s alar, v ctor or te s r q a tity
Note 2 to e try: Ex mple are a( = Âc s(ωt +ϑ
0) a d a(x) = Âc s[k (x –x )]
value of the phase of a sin soidal q antity when the value of the in e en ent varia le is zero
Note 1 to e try: For th q a tity a( = Âc s(ωt +ϑ
0), th initial p a e is ϑ
0
[SOURCE: IEC 6 0 0-10 :2 0 , 10 -0 -0 ]
3.5
periodic conditions
state of an electric circ it element or electric circ it that is c aracterized by the electric
c r ents an voltages al b in p riodic f un tion of time with the same p riod T
[SOURCE: IEC 6 0 0-131:2 0 , 131-1 -2 , modif ied – ad ition of s mb l T f or the p riod
3.6
sinusoidal conditions
state of a l ne r electric circ it element or electric circ it that is c aracterized by the electric
c r ents an voltages al b in sin soidal f un tion of time with the same f req en y
where u
AB
is the l ne integral of the electric f ield stren th f rom A to B, an where the electric
c r ent in the element or circ it is taken p sitive if its direction is f rom A to B an negative if
its direction is f rom B to A
Trang 12Note 1 to e try: Th dire tio of ele tric c re t is a d fin d in IEC 6 0 0:2 0 , 131 1 -2
Note 2 to e try: In circ it th ory th ele tric field stre gth is g n raly n n-otatio al a d th s u
B
= v
A– v
B,
wh re v
A
a d v
Bare th ele tric p te tials at termin ls A a d B, re p ctiv ly
Note 3 to e try: Th c h re t SI u it of in ta ta e u p wer is wat, W
Note 4 to e try: A two-termin l eleme t or circ it refers to a sin le-p a e e uipme t or s stem
[SOURCE: IEC 6 0 0-131:2 13, 131-1 -3 , modif ied – in note 2, the term ir otational is
re laced by non- otational an a new note 4 has b en ad ed
3.8
S
prod ct of the r.m.s voltage U b twe n the terminals of a two-terminal element or
two-terminal circ it an the r.m.s electric c r ent I in the element or circ it
S = UI
Note 1 to e try: Th c h re t SI u it for a p re t p wer is v ltamp re, V
Note 2 to e try: A two-termin l eleme t or circ it refers to a sin le-p a e e uipme t or s stem
[SOURCE: IEC 6 0 0-131:2 13, 131-1 -41, modif ied – the existin note 1 has b en removed
dttp
TP
0)(1
Note 1 to e try: Th c h re t SI u it for a tiv p wer is wat, W
Note 2 to e try: Wh n th v lta e or c re t c ntain interh rmo ic c mp n nts, ofte th ir wa eforms are n
more p rio ic In this d c me t, th a tiv p wer is a pro imate b th me n v lu of th in ta ta e u p wer,
ta e o er a inte er n mb r of p rio s of th a.c p wer s p ly s stem (s e 5.3.1 a d 5.1.4) This d finitio is
als u e u d r p rio ic c n itio s in this d c me t (s e 6.3 a d Cla s A.3)
[SOURCE: IEC 6 0 0-131:2 13, 131-1 -4 , modif ied – the existin note 1 has b en removed
an a note 2 has b en ad ed
3.10
non-a tiv power
Q~
f or a two-terminal element or a two-terminal circ it u der p riodic con ition , q antity eq al
to the s uare ro t of the dif f eren e of the s uares of the a p rent p wer S an the active
p wer P
Q~
22
Note 2 to e try: A two-termin l eleme t or circ it refers to a sin le-p a e e uipme t or s stem
[SOURCE: IEC 6 0 0-131:2 13, 131-1 -4 , modif ied – the existin note 1 has b en removed
an a note 2 has b en ad ed
Trang 13Q
f or a l ne r two-terminal element or two-terminal circ it, u der sin soidal con ition , q antity
eq al to the prod ct of the a p rent p wer S an the sine of the displacement an le φ
Q = S sinϕ
Note 1 to e try: Th c h re t SI u it for re ctiv p wer is v ltamp re, V Th s e ial n me v r a d its s mb l
v r are als u e Se IEC 6 0 0- 31:2 13, 131 1 -4
Note 2 to e try: A two-termin l eleme t or circ it refers to a sin le-p a e e uipme t or s stem
Note 3 to e try: Wh n th c n itio s are n t sin s id l th re is n intern tio al c n e s s o a d finitio of th
re ctiv p wer In te d, s v ral d finitio s of th re ctiv p wer e ist In s me d c me ts, th re ctiv p wer is
ta e a th n n-a tiv p wer, b t th re are ma y oth r formula
[SOURCE: IEC 6 0 0-131:2 13, 131-1 -4 , modif ied – the existin note 1 has b en removed
=λ
Note 1 to e try: Un er sin s id l c n itio s, th p wer fa tor is th a s lute v lu of th a tiv fa tor
[SOURCE: IEC 6 0 0-131:2 0 , 131-1 -4 , modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
3.13
displa eme t a gle
pha e dif f ere c a gle
φ
u der sin soidal con ition , phase dif f eren e b twe n the voltage a pled to a lne r
two-terminal element or two-terminal circ it an the electric c r ent in the element or circ it
Note 1 to e try: Th c sin of th dis la eme t a gle is th a tiv fa tor
Note 2 to e try: A two-termin l eleme t or circ it refers to a sin le-p a e e uipme t or s stem
[SOURCE: IEC 6 0 0-131:2 0 , 131-1 -4 , modif ied – a note 2 has b en ad ed
3.14
a tiv fa tor
f or a two-terminal element or a two-terminal circ it u der sin soidal con ition , ratio of the
active p wer to the a p rent p wer
Note 1 to e try: Th a tiv fa tor is e u l to th c sin of th dis la eme t a gle, a d c n v ry fom –1 to +1
Note 2 to e try: A two-termin l eleme t or circ it refers to a sin le-p a e e uipme t or s stem
[SOURCE: IEC 6 0 0-131:2 0 , 131-1 -4 , modif ied – a note 2 has b en ad ed
Trang 14[SOURCE: IEC 6 0 0-10 :2 0 , 10 -0 -19]
3.16
ref ere c f undamental compone t
con entional y c osen sin soidal comp nent of a q antity, to the f req en y of whic al the
other comp nents are ref er ed
Note 1 to e try: Th term is u e wh n, for a p rio ic q a tity, th c o e c mp n nt difers fom th
fu d me tal c mp n nt, or wh n th q a tity is n t p rio ic d e to interh rmo ic c mp n nts
Note 2 to e try: In this d c me t, th c mp n nt h vin th fe u n y of th a.c s p ly s stem is c o e a th
refere c fu d me tal c mp n nt
[SOURCE: IEC 6 0 0-10 :2 0 , 10 -0 -2 , modif ied – def i ition exten ed to q antities
containin interharmonic comp nents an a note 2 ad ed
refere c fundamental fre ue c
f req en y of the ref eren e f un amental comp nent
Note 1 to e try: Th term is u e wh n, for a p rio ic q a tity, th refere c fu d me tal c mp n nt difers fom
th fu d me tal c mp n nt,or wh n th q a tity is n t p rio ic d e to interh rmo ic c mp n nts
[SOURCE: IEC 6 0 0-10 :2 0 , 10 -0 -2 , modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
3.19
harmonic f re u nc
f req en y whic is an integer multiple gre ter than one of the f un amental f req en y or of
the ref eren e f un amental f req en y
Note 1 to e try: Wh n a refere c fu d me tal fe u n y is d fin d, it is u e in pla e of th fu d me tal
harmonic compone t
sin soidal comp nent of a q antity havin a harmonic f req en y
[SOURCE: IEC 6 0 0-5 1:2 01, 5 1-2 -0 , modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
Trang 15interharmonic compone t
sin soidal comp nent of a q antity havin an interharmonic f req en y
[SOURCE: IEC 6 0 0-5 1:2 01, 5 1-2 -0 , modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
3.2
harmonic order
ratio of the f req en y of an sin soidal comp nent to the f un amental f req en y or the
ref eren e f un amental f req en y
Note 1 to e try: Th h rmo ic ord r of th fu d me tal c mp n nt or th refere c fu d me tal c mp n nt is
total distortion conte t
q antity o tained by s btractin f rom a q antity its direct comp nent an its f un amental
comp nent or its ref eren e f un amental comp nent
Note 1 to e try: Th total distortio c nte t in lu e h rmo ic c mp n nts a d interh rmo ic c mp n nts if a y
Note 2 to e try: Wh n a refere c fu d me tal fe u n y is d fin d, th refere c fu d me tal c mp n nt is
u e in pla e of th fu d me tal c mp n nt
Note 3 to e try: Th total distortio c nte t is a time fu ctio
[SOURCE: IEC 6 0 0-5 1:2 01, 5 1-2 -1 , modif ied – def i ition exten ed to q antities
containin interharmonic comp nents an note 4 deleted
3.2
harmonic conte t
s m of the harmonic comp nents of a q antity
Note 1 to e try: Th h rmo ic c nte t is a timefu ctio
[SOURCE: IEC 6 0 0-5 1:2 01, 5 1-2 -12, modif ied – def i ition exten ed to q antities
containin interharmonic comp nents an notes 2 an 3 deleted
3.2
total harmonic ratio
total harmonic distortion
THD
ratio of the r.m.s value of the harmonic content to the r.m.s value of the f un amental
comp nent or the ref eren e f un amental comp nent of a q antity
Note 1 to e try: Wh n a refere c fu d me tal fe u n y is d fin d, th refere c fu d me tal c mp n nt is
u e in pla e of th fu d me tal c mp n nt
Note 2 to e try: Th total h rmo ic ratio c n b a pro imate b lmitin th c lc latio u to a c rtain h rmo ic
ord r
[SOURCE: IEC 6 0 0-5 1:2 01, 5 1-2 -13, modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
Trang 16total distortion ratio
ratio of the r.m.s value of the total distortion content to the r.m.s value of the f un amental
comp nent or the ref eren e f un amental comp nent of a q antity
Note 1 to e try: Wh n a refere c fu d me tal fe u n y is d fin d, th refere c fu d me tal c mp n nt is
u e in pla e of th fu d me tal c mp n nt
Note 2 to e try: Th total distortio ratio c n b a pro imate b lmitin th c lc latio u to a c rtain h rmo ic
ord r
[SOURCE: IEC 6 0 0-5 1:2 01, 5 1-2 -14, modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
[SOURCE: IEC 6 0 0-5 1:2 01, 5 1-2 -17, modif ied – def i ition exten ed to q antities
containin interharmonic comp nents
This Tec nical Re ort provides def i ition of variou electrical p wer q antities an the
relation hip b twe n them, when a voltage u(t) is a pl ed to a sin le-phase eq ipment or
s stem, i t) b in the c r ent f lowin in the eq ipment or s stem
The f olowin cases are con idered:
• In Clau e 5, the general case is des rib d The voltage an c r ent are b th distorted an
can contain d.c harmonic an interharmonic comp nents
• In Clau e 6, the voltage is as umed to b sin soidal an the c r ent is only distorted with
harmonic comp nents
• In An ex A, the voltage an c r ent are b th sin soidal
In this doc ment, the ref eren e f un amental f req en y is the f req en y of the a.c s p ly
p wer s stem (as umed to b con tant, but not neces ari y eq al to the rated value of 5 Hz
or 6 Hz) an al harmonic or interharmonic f req en ies are related to this f req en y
In the p rtic lar case where the voltage is sin soidal an the c r ent do s not contain
interharmonic comp nents, these q antities are p riodic an their f un amental f req en y is
eq al to the f req en y of the a.c p wer s p ly s stem Theref ore, the term " ef eren e
f un amental f req en y" is re laced by the term "f un amental f req en y" in Clau e 6 an
An ex A
In this Tec nical Re ort, the harmonic order of harmonic or interharmonic comp nents is not
l mited But, in practical a pl cation , the harmonic order may b l mited to a sp cif ied order
Trang 175 Electric power quantities under non-sinusoidal conditions
5.1.1 Insta ta eous v lu s
For ste d -state con ition , the non-sin soidal in tantane u value of the voltage or c r ent
is the s m of a d.c comp nent, a sin soidal comp nent at the p wer s stem f req enc an
sin soidal comp nents at harmonic or interharmonic f req en ies
+
⋅+
=
1011
0
sin2sin
2)
(
mm
mm
tmU
tU
Ut
+
⋅+
=
1011
0
sin2sin
2)
(
mm
mm
tmI
tI
It
is the r.m.s value of the ref eren e f un amental comp nent of the voltage;
ω is the an ular f req en y cor esp n in to the ref eren e f un amental f req en y;
t is the time;
α
1
is the initial phase of the ref eren e f un amental comp nent of the voltage;
m is the harmonic order (m is a p sitive re l n mb r dif f erent f rom 0 an 1 It is an integer
n mb r f or harmonic comp nents an a non-integer n mb r f or interharmonic
comp nents);
U
m
is the r.m.s value of the voltage harmonic or interharmonic comp nent of order m;
α is the initial phase of the voltage harmonic or interharmonic comp nent of order m;
i() is the in tantane u value of the c r ent at time t;
is the r.m.s value of the c r ent harmonic or interharmonic comp nent of order m;
β is the initial phase of the c r ent harmonic or interharmonic comp nent of order m
The non-sin soidal in tantane u value of the voltage or c r ent can also b writen as the
s m of thre terms:
)()()
(
D10
tutuUt
)()()
(
D10
titiIt
() is the total distortion content of the voltage at time t (se 5.1.3);
i ( ) is the ref eren e f un amental comp nent of the c r ent at time t (se 5.1.2);
i
D
( ) is the total distortion content of the c r ent at time t (se 5.1.3)
Trang 185.1.2 Ref ere c f und me tal compone ts
The ref eren e f un amental comp nent of the voltage (c r ent is def i ed as the sin soidal
comp nent of the voltage (c r ent havin the f req en y of the a.c p wer s p ly s stem:
11
sin2)
u
11
sin2)
i
5.1.3 Total distortion conte ts
The total distortion content of the voltage (c r ent is o tained by s btractin the direct
comp nent an the ref eren e f un amental comp nent f rom the in tantane u value of the
voltage (c r ent :
)()
()(
10D
tuUtut
)()
()(
10D
tiItit
sin2)
(
mm
mm
tmU
sin2)
(
mm
mm
tmI
t
5.1.4 RMS v lue of the volta e a d c r e t
In this doc ment, the r.m.s value of the voltage U (c r ent I) is def i ed as the p sitive
s uare ro t of the me n value of the s uare of the voltage (c r ent taken over an integer
n mb r of p riod of the a.c p wer s p ly s stem:
∫+
=
kT
dttu
kTU
t
t
2
)(1
∫+
=
kT
dtti
kTI
t
t
2
)(1
where
T is the reciprocal of the ref eren e f un amental f req en y;
k is an integer n mb r;
τ is the time when the me s rement starts
NOT If th v lta e a d c re t are o ly distorte with h rmo ic c mp n nts, th n a me s reme t time interv l
k T e a le th c re t me s reme t of r.m.s a d p wer v lu s If th v lta e or th c re t c ntain interh rmo ic
c mp n nts, r.m.s a d p wer v lu s are in ore tly me s re , u le s th me s reme t time interv l k T in lu e
a inte er n mb r of th p rio of e c interh rmo ic c mp n nt For pra tic l situ tio s wh n th b lk of th
p wer is c rie b th refere c fu d me tal c mp n nts, s c er ors are smal Th larg r th me s reme t
time interv l k T, th le s sig ific nt th erors c u e b interh rmo ic c mp n nts b c me For more
informatio , s e IE E Std 14 9-2 10 Pra tic l meth d to e alu te sig als th t c ntain interh rmo ic or
Trang 19These q antities are the s m of several terms:
2
D2
12
02
UUU
2
D2
12
02
III
is the r.m.s value of the total distortion content of the c r ent (se 5.1.5)
5.1.5 RMS v lu s of total distortion conte ts
Ac ordin to the def i ition given in 5.1.3, the r.m.s value of the total distortion content of the
voltage (c r ent is def i ed as f ol ows:
2
12
022
D
UUU
2
12
022
D
III
22
D
mmmUU
22
D
mmmII
5.1.6 DC ratios
The d.c ratio of the voltage DCR
U(c r ent DCR
I) is def i ed as the ratio of its d.c comp nent
to the r.m.s value of its ref eren e f un amental comp nent:
10
U
UU
10
I
II
5.1.7 Total distortion ratios
The total distortion ratio of the voltage TDR
U(c r ent TDR
I) is def i ed as the ratio of the
r.m.s value of its total distortion content to the r.m.s value of its ref eren e f un amental
comp nent: