1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Iec 60099 1 1999

96 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Iec 60099 1 1999
Trường học Ranchi/Bangalore - MECON Limited
Chuyên ngành Electrical Engineering
Thể loại Standards Document
Năm xuất bản 1999
Thành phố Ranchi
Định dạng
Số trang 96
Dung lượng 454,34 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Cấu trúc

  • SECTION 1: GÉNÉRALITÉS (12)
    • 1.1 Domaine d'application (12)
    • 1.2 Références normatives (12)
  • SECTION 2: DÉFINITIONS (12)
  • SECTION 3: IDENTIFICATION ET CLASSIFICATION (22)
    • 3.1 Identification du parafoudre (22)
    • 3.2 Classification des parafoudres (24)
  • SECTION 4: CARACTÉRISTIQUES ASSIGNÉES (24)
    • 4.1 Tensions assignées normales (24)
    • 4.2 Fréquences assignées normales (24)
    • 4.3 Valeurs normales des courants de décharge nominaux (24)
    • 4.4 Conditions de service (26)
      • 4.4.1 Conditions normales de service (26)
      • 4.4.2 Conditions de service anormales (26)
  • SECTION 5: PRESCRIPTIONS (26)
    • 5.1 Tension d'amorỗage à frộquence industrielle (26)
    • 5.2 Tension d'amorỗage au choc de foudre normal (26)
    • 5.3 Tension d'amorỗage au choc sur front (26)
    • 5.4 Tension d'amorỗage au choc de manoeuvre (26)
    • 5.5 Tension résiduelle au choc de foudre (28)
    • 5.6 Tension résiduelle au choc de manoeuvre (28)
    • 5.7 Tenue aux chocs de courant de grande amplitude (28)
    • 5.8 Tenue aux chocs de courant de longue durée (28)
    • 5.9 Fonctionnement des parafoudres (28)
    • 5.10 Limiteur de pression (28)
    • 5.11 Dispositifs de déconnexion (30)
      • 5.11.1 Tenue du dispositif de déconnexion (30)
      • 5.11.2 Fonctionnement du dispositif de déconnexion (30)
  • SECTION 6: CONDITIONS GÉNÉRALES DES ESSAIS (30)
    • 6.1 Echantillons destinés aux essais et mesures (30)
    • 6.2 Essais sous tension à fréquence industrielle (30)
    • 6.3 Essais sous pluie (30)
    • 6.4 Essai sous pollution artificielle (32)
  • SECTION 1: GENERAL (13)
    • 1.1 Scope (13)
    • 1.2 Normative references (13)
  • SECTION 2: DEFINITIONS (13)
  • SECTION 3: IDENTIFICATION AND CLASSIFICATION (23)
    • 3.1 Arrester identification (23)
    • 3.2 Arrester classification (25)
  • SECTION 4: STANDARD RATINGS (25)
    • 4.1 Standard voltage ratings (25)
    • 4.2 Standard rated frequencies (25)
    • 4.3 Standard nominal discharge currents (25)
    • 4.4 Service conditions (27)
      • 4.4.1 Normal service conditions (27)
      • 4.4.2 Abnormal service conditions (27)
  • SECTION 5: REQUIREMENTS (27)
    • 5.1 Power-frequency sparkover voltage (27)
    • 5.2 Standard lightning impulse sparkover voltage (27)
    • 5.3 Front-of-wave impulse sparkover voltage (27)
    • 5.4 Switching impulse sparkover voltage (27)
    • 5.5 Lightning impulse residual voltage (29)
    • 5.6 Switching impulse residual voltage (29)
    • 5.7 High-current impulse withstand (29)
    • 5.8 Long-duration current withstand (29)
    • 5.9 Operating-duty (29)
    • 5.10 Pressure-relief (29)
    • 5.11 Disconnectors (31)
      • 5.11.1 Disconnector withstand (31)
      • 5.11.2 Disconnector operation (31)
  • SECTION 6: GENERAL TESTING PROCEDURE (31)
    • 6.1 Test samples and measurements (31)
    • 6.2 Power-frequency voltage tests (31)
    • 6.3 Wet tests (31)
    • 6.4 Artificial-pollution tests (33)
    • 7.1 Essais individuels (32)
    • 7.2 Essais de réception normaux (32)
  • SECTION 8: ESSAIS DE TYPE (34)
    • 8.1 Généralités (34)
    • 8.2 Essai d'amorỗage sous tension à frộquence industrielle (36)
    • 8.3 Essais d'amorỗage sous choc de tension (38)
      • 8.3.1 Généralités (38)
      • 8.3.2 Essai d'amorỗage au choc de foudre normal (38)
      • 8.3.3 Essai en vue de dộterminer la courbe tension/temps d'amorỗage au choc de (40)
      • 8.3.4 Dộtermination de la tension d'amorỗage au choc sur front (40)
      • 8.3.5 Essai en vue de dộterminer la courbe tension/temps d'amorỗage au choc de (42)
    • 8.4 Mesure de la tension résiduelle (44)
      • 8.4.1 Tension résiduelle en choc de foudre (44)
      • 8.4.2 Tension résiduelle en choc de manoeuvre (44)
    • 8.5 Essais de tenue aux chocs de courant (48)
      • 8.5.1 Généralités (48)
      • 8.5.2 Essais aux chocs de courant de grande amplitude (48)
      • 8.5.3 Essais aux chocs de courant de longue durée (50)
    • 8.6 Essai de fonctionnement (54)
    • 8.7 Essais de court-circuit (58)
      • 8.7.1 Généralités (58)
      • 8.7.2 Préparation des échantillons en essai (58)
      • 8.7.3 Montage de l’échantillon en essai (62)
      • 8.7.4 Evaluation des résultats d’essais (68)
      • 8.7.5 Essais de court-circuit à courants forts (68)
      • 8.7.6 Essais de court-circuit à faible courant (72)
    • 8.8 Essais des dispositifs de déconnexion pour parafoudres (72)
      • 8.8.1 Généralités (72)
      • 8.8.2 Essais de tenue au courant de choc et lors du fonctionnement (72)
      • 8.8.3 Fonctionnement du dispositif de déconnexion (74)
    • 7.1 Routine tests (33)
    • 7.2 Acceptance tests (33)
  • SECTION 8: TYPE TESTS (DESIGN TESTS) (35)
    • 8.1 General (35)
    • 8.2 Power-frequency voltage sparkover tests (37)
    • 8.3 Voltage impulse sparkover tests (39)
      • 8.3.1 General (39)
      • 8.3.2 Standard lightning impulse sparkover test (39)
      • 8.3.3 Lightning impulse sparkover-voltage/time curve test (41)
      • 8.3.4 Front-of-wave impulse sparkover test (41)
      • 8.3.5 Switching impulse sparkover-voltage/time curve test (43)
    • 8.4 Measurement of residual voltage (45)
      • 8.4.1 Lightning impulse residual voltage (45)
      • 8.4.2 Switching impulse residual voltage (45)
    • 8.5 Current impulse withstand tests (49)
      • 8.5.1 General (49)
      • 8.5.2 High-current impulse test (49)
      • 8.5.3 Long-duration current impulse test (51)
    • 8.6 Operating-duty test (55)
    • 8.7 Short-circuit tests (59)
      • 8.7.1 General (59)
      • 8.7.2 Preparation of the test samples (59)
      • 8.7.3 Mounting of the test sample (63)
      • 8.7.4 Evaluation of test results (69)
      • 8.7.5 High current short-circuit tests (69)
      • 8.7.6 Low current short-circuit test (73)
    • 8.8 Tests of arrester disconnectors (73)
      • 8.8.1 General (73)
      • 8.8.2 Current impulse withstand and operating-duty tests (73)
      • 8.8.3 Disconnector operation (75)

Nội dung

Microsoft Word 99 1f ed3 1 doc NORME INTERNATIONALE CEI IEC INTERNATIONAL STANDARD 60099 1 Edition 3 1 1999 12 Parafoudres – Partie 1 Parafoudres à résistance variable avec éclateurs pour réseaux à co[.]

GÉNÉRALITÉS

Domaine d'application

This section of the International Standard IEC 60099 pertains to surge protection devices designed for reliable operation, aimed at limiting overvoltages in alternating current circuits and interrupting current flow It specifically addresses surge arresters that include a single or multiple spark gaps in series with one or more variable resistors.

Références normatives

Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente Norme internationale.

Pour les références datées, les amendements ultérieurs ou les révisions de ces publications ne s’appliquent pas Toutefois, les parties prenantes aux accords fondés sur la présente

International standards are encouraged to explore the possibility of applying the latest editions of the normative documents listed below For undated references, the most recent edition of the referenced normative document applies Members of ISO and the

CEI possèdent le registre des Normes internationales en vigueur.

CEI 60060, Techniques des essais à haute tension

CEI 60071-2:1976, Coordination de l'isolement – Deuxième partie: Guide d'application

CEI 60099-3:1990, Parafoudres – Partie 3: Essais de pollution artificielle des parafoudres

DÉFINITIONS

A surge protector is a device designed to safeguard electrical equipment from high transient overvoltages and to limit the duration and often the magnitude of follow-up currents It is considered part of the surge protection system, which includes any external spark gap necessary for the proper operation of the device while in service, regardless of whether this spark gap is included in the supply.

Surge protectors are typically connected between the conductors of a network and the ground, although they can also be connected to the terminals of device windings or between conductors.

2.2 parafoudre à résistance variable avec éclateurs parafoudre ayant un éclateur simple ou multiple connecté en série avec une ou plusieurs résistances variables

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

Part 1: Non-linear resistor type gapped surge arresters for a.c systems

The International Standard IEC 60099 outlines the requirements for surge protective devices that are intended for repeated use in limiting voltage surges on alternating current (a.c.) power circuits and interrupting power-follow current This standard specifically addresses surge arresters that incorporate single or multiple spark gaps in conjunction with one or more non-linear resistors.

This International Standard references several normative documents that form its provisions For dated references, any amendments or revisions do not apply; however, parties are encouraged to consider the latest editions of these documents For undated references, the most recent edition is applicable ISO and IEC members keep registers of currently valid International Standards.

IEC 60060: High-voltage test techniques.

IEC 60071-2:1976, Insulation co-ordination – Part 2: Application guide.

IEC 60099-3:1990, Surge arresters – Part 3: Artificial pollution testing of surge arresters.

SECTION 2: DEFINITIONS For the purpose of this part, the following definitions apply:

A surge arrester is a protective device that safeguards electrical equipment from high transient voltages, effectively limiting both the duration and often the amplitude of follow-current This term encompasses any external series gap necessary for the device's proper operation in service, regardless of whether it is included as an integral component.

NOTE Surge arresters are usually connected between the electrical conductors of a network and earth although they may sometimes be connected across the windings of apparatus or between electrical conductors.

2.2 non-linear resistor type gapped arrester: an arrester having a single or a multiple spark-gap connected in series with one or more non- linear resistors

* This type of equipment may be called "surge diverter" in some countries.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

2.3 éclateur série d'un parafoudre intervalle réalisé (ou intervalles réalisés) entre des électrodes, placé en série avec la résistance variable (ou les résistances variables) du parafoudre

The variable (non-linear) series resistance of a lightning arrester is a crucial component that exhibits non-linear voltage-current characteristics It functions as a low-value resistance to allow high-amplitude discharge currents to pass, thereby limiting the voltage across the arrester Additionally, it acts as a high-value resistance under normal industrial frequency conditions, effectively limiting the magnitude of follow-up currents.

A 2.5 fraction of a lightning arrester is a component housed within an envelope that includes all necessary elements, such as series spark gaps and variable resistors, in appropriate quantities to accurately represent the behavior of a complete lightning arrester during a specific test.

A lightning arrester element is a component fully enclosed within a housing, designed to be connected in series with other elements to achieve a higher rated voltage lightning arrester It is important to note that a lightning arrester element is not necessarily a fraction of a lightning arrester.

A pressure limiter for a lightning arrester is designed to regulate the internal pressure within the device, preventing explosive rupture of the housing due to prolonged current flow or internal arcing.

The assigned voltage of a surge protector is the maximum specified effective voltage at industrial frequency that can be applied across its terminals for proper operation This voltage can be continuously applied to the surge protector without altering its operational characteristics.

2.9 fréquence assignée d'un parafoudre fréquence du réseau pour lequel le parafoudre est prévu

Disruptive discharge is a phenomenon linked to the failure of insulation due to electrical stress, resulting in a voltage drop and current flow This term refers to electrical breakdowns in solid, liquid, and gaseous dielectrics, as well as their combinations.

NOTE Une dộcharge disruptive dans un diộlectrique solide entraợne une perte permanente de la rigiditộ diélectrique; dans un diélectrique liquide ou gazeux, cette perte peut n'être que temporaire.

2.11 perforation décharge disruptive à travers un solide

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

2.3 series gap of an arrester: an intentional gap or gaps between spaced electrodes in series with the non-linear series resistor or resistors of the arrester

A non-linear series resistor in a surge arrester is designed to exhibit unique voltage-current characteristics It provides low resistance during high discharge currents, effectively limiting the voltage across the arrester terminals Conversely, it acts as a high resistance under normal power-frequency voltage conditions, thereby controlling the magnitude of follow-current.

A 2.5 section of an arrester is a fully assembled and appropriately housed component that includes series gaps and non-linear series resistors These elements are proportioned to accurately reflect the performance of a complete arrester during specific testing conditions.

A unit of an arrester is a fully enclosed component that can be connected in series with additional units to create an arrester with a higher voltage rating It is important to note that a unit of an arrester does not have to be a section of the entire arrester.

A pressure-relief device in an arrester is essential for managing internal pressure, effectively preventing the explosive shattering of the housing This mechanism is crucial during prolonged follow-current or internal flashover events, ensuring the safety and integrity of the arrester.

IDENTIFICATION ET CLASSIFICATION

Identification du parafoudre

Les parafoudres doivent être définis au moins au moyen des indications suivantes devant figurer sur leur plaque signalétique:

– fréquence assignée, si elle diffère d'une des fréquences normales (voir 4.2);

– courant nominal de décharge (en spécifiant série A ou série B* pour le parafoudre 5 000 A et service intensif ou service non intensif pour le parafoudre 10 000 A);

– classe de décharge de longue durée (pour les parafoudres 10 000 A à service intensif), voir

The surge protectors in the A series meet the required specifications for all countries, while the B series surge protectors are designed to comply with the standards set in Canada, the United States, and other nations.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

2.43 type tests (design tests) tests which are made upon the completion of the development of a new arrester design to establish representative performance and to demonstrate compliance with this part of the standard Once made, these tests need not be repeated unless the design is so changed as to modify its performance.

2.44 routine tests tests made on each arrester or on parts and materials as required to ensure that the product meets the design specifications

2.45 acceptance tests selected tests which are made when it has been agreed between the manufacturer and the purchaser that the arresters or representative samples of an order are to be tested.

2.46 protective characteristics of an arrester the combination of the following: a) lightning impulse sparkover-voltage/time curve as determined in 8.3.3; b) the residual-voltage/discharge-current curve as determined in clause 8.4; c) for 10 000 A arresters rated 100 kV and higher, the switching-voltage impulse sparkover- voltage/time curve as determined in 8.3.5.

2.47 arrester disconnector a device for disconnecting an arrester from the system in the event of arrester failure to prevent a persistent fault on the system and to give visible indication of the failed arrester

The arrester does not typically function to clear fault currents during disconnection, and it may fail to prevent the explosive shattering of its housing after an internal flashover occurs under high fault currents.

Surge arresters shall be identified by the following minimum information which shall appear on the rating plate (nameplate):

– rated frequency, if other than one of the standard frequencies, see 4.2;

– nominal discharge current (specifying for the 5 000 A arrester whether series A or series

B*, and for the 10 000 A arrester, whether light or heavy duty);

– long-duration discharge class (for 10 000 A heavy-duty arresters), see 8.5.3.2;

Series A arresters are designed according to performance characteristics observed globally, while Series B arresters are specifically tailored to the performance standards of Canada, the United States, and other nations.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

The lightning arrester's nameplate must indicate the withstand current for short-circuit currents in kiloamperes If no withstand capability for short-circuit currents is declared, this must be clearly stated on the nameplate; refer to section 8.7.

– nom du constructeur ou marque de fabrique, type et repères d'identification;

NOTE 1 L'annexe B peut servir de guide pour choisir les informations à fournir lors d'un appel d'offre ou d'une offre.

NOTE 2 Dans certains pays, il est d'usage de désigner les parafoudres par les termes suivants:

– parafoudres de poste pour les appareils 10 000 A;

– parafoudres intermédiaires (série A) ou de distribution (série B) pour les appareils 5 000 A*;

– parafoudres pour circuits secondaires pour les appareils 1 500 A.

Classification des parafoudres

Surge protectors are categorized based on their nominal discharge current values and must meet the testing conditions and operational characteristics outlined in Table 3 Surge protectors with more favorable operational characteristics or lower protection levels than those specified in this standard are deemed compliant.

CARACTÉRISTIQUES ASSIGNÉES

Tensions assignées normales

Les valeurs normales des tensions assignées des parafoudres doivent être choisies dans le tableau 1.

Tableau 1 – Valeurs normales des tensions assignées

Les tensions assignées supérieures à 198 kV doivent être divisibles par 6.

Fréquences assignées normales

Les fréquences assignées normales sont 50 Hz et 60 Hz.

Valeurs normales des courants de décharge nominaux

Les valeurs normales des courants de décharge nominaux (en choc 8/20) sont 10 000 A,

There are two types of surge protectors rated at 10,000 A: non-intensive service and intensive service These types differ in the magnitude of the long-duration surge current they can withstand For more details, refer to section 8.5.3.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

The nameplate of the surge arrester must clearly indicate the rated short-circuit withstand current in kiloamperes Additionally, for arresters that do not have a specified short-circuit withstand capability, this information should also be displayed on the nameplate, as outlined in section 8.7.

– manufacturer`s name or trademark, type and identification;

NOTE 1 Information to be given by inquiry or tender may be guided by annex B.

NOTE 2 In some countries, it is customary to classify arresters as:

– intermediate (series A) or distribution (series B) for 5 000 A arresters*;

Surge arresters are categorized based on their standard nominal discharge currents and must comply with the test requirements and performance characteristics outlined in table 3 Arresters that exhibit superior performance characteristics or lower protective levels than those specified in this standard are deemed to have satisfied the requirements.

Standard values of rated voltages for arresters shall be as listed in Table 1.

Table 1 – Standard voltage ratings (kV r.m.s.)

For voltage ratings above 198 kV, the arrester ratings shall be divisible by 6.

The standard rated frequencies are 50 Hz and 60 Hz.

The standard nominal discharge currents are: 10 000 A, 5 000 A, 2 500 A and 1 500 A, having an 8/20 waveshape.

The 10,000 A arrester is available in two types: light-duty and heavy-duty These types are distinguished by their ability to withstand different amplitudes of long-duration impulse currents, as detailed in section 8.5.3.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

Conditions de service

Surge protectors that comply with this standard must operate under the following normal service conditions: an ambient temperature range of -40 °C to +40 °C, an altitude not exceeding 1,000 meters, an AC supply frequency between 48 Hz and 62 Hz, and an applied industrial frequency voltage across the surge protector terminals that does not exceed its rated voltage.

Surge protectors designed for various applications or subjected to abnormal service conditions may require special consideration for their manufacturing or use, and each case should be evaluated with the manufacturer Refer to Appendix A for abnormal service conditions and Appendix C for selecting the long-duration discharge class of surge protectors for intensive service.

PRESCRIPTIONS

Tension d'amorỗage à frộquence industrielle

For all classes of surge protectors, except for the 10,000 A class designed for intensive service, the minimum industrial frequency sparkover voltage must not be less than 1.5 times the rated voltage of the surge protector.

10 000 A, pour service intensif, la valeur la plus basse de la tension d'amorỗage à frộquence industrielle doit faire l'objet d'un accord entre le constructeur et le client.

On notera que l'essai d'amorỗage à frộquence industrielle à sec constitue une prescription minimale pour les essais individuels que doit effectuer le constructeur, comme indiqué en 6.1.

Tension d'amorỗage au choc de foudre normal

The lightning shock voltage is set as specified in section 8.3.2 and in Table 8 The surge protector must trigger for each shock in a series of five positive shocks and five negative shocks.

If, in a series of five shocks, one shock fails to ignite the detonators, an additional series of ten shocks of the same polarity is applied, and the detonators must ignite with each of these shocks.

Tension d'amorỗage au choc sur front

With voltage shocks that adhere to the conventional stiffness outlined in Table 8, the ignition voltage must not exceed the specified value in the same table This is verified, as detailed in section 8.3.4, through a test involving five positive and five negative shocks, or by using the curve of ignition voltage during lightning shocks over time, described in section 8.3.3.

Tension d'amorỗage au choc de manoeuvre

Cette tension est déterminée sur les parafoudres 10 000 A de tension assignée supérieure à

100 kV conformément à 8.3.5 Des valeurs maximales sont spécifiées uniquement pour les parafoudres à service intensif de tension assignée supérieure à 200 kV Pour ces parafoudres, les valeurs sont données dans le tableau 8, colonne 7.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

Surge arresters that meet the specified standard are designed to operate effectively under normal service conditions, which include an ambient temperature range of –40 °C to +40 °C, an altitude limit of 1,000 m, an a.c power supply frequency between 48 Hz and 62 Hz, and a power-frequency voltage between the line and earth terminals that does not exceed the rated voltage.

Arresters operating under abnormal service conditions necessitate careful evaluation during manufacturing and application, and it is essential to consult with the manufacturer for each specific case For further details, refer to Annex A on abnormal service conditions and Annex C regarding the selection of the long-duration discharge class for heavy-duty arresters.

For surge arresters, all classes except the 10,000 A heavy-duty class must have a minimum power-frequency sparkover voltage of at least 1.5 times their rated voltage In contrast, the sparkover voltage for the 10,000 A heavy-duty class is determined through mutual agreement between the manufacturer and the purchaser.

It should be noted that the dry power-frequency sparkover test is the minimum requirement for routine tests to be made by the manufacturer as specified in 6.1.

5.2 Standard lightning impulse sparkover voltage

With the lightning impulse voltage specified in 8.3.2 and table 8 the arrester shall sparkover on every impulse of a series of five positive and five negative impulses.

If any series of five impulses does not result in a single sparkover, an extra ten impulses of the same polarity will be applied, ensuring that the gaps sparkover during all of these impulses.

5.3 Front-of-wave impulse sparkover voltage

The sparkover voltage must not exceed the values listed in table 8 when voltage impulses have a virtual steepness of front as specified This requirement is confirmed through testing, which involves five positive and five negative impulses, or by utilizing the lightning impulse sparkover voltage/time curve outlined in section 8.3.3.

This voltage is determined on 10 000 A arresters having a rated voltage above 100 kV according to 8.3.5 There are limits only for heavy-duty arresters with rated voltages above

200 kV For these arresters the limits are given in table 8 (column 7).

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

Tension résiduelle au choc de foudre

The residual voltage for the nominal discharge current is determined from the curves plotted according to the method outlined in section 8.4.1 This voltage must not exceed the maximum specified residual value for the surge arrester, as indicated in table 8.

Tension résiduelle au choc de manoeuvre

Cette prescription s'applique aux parafoudres 10 000 A, service intensif ou non, ou

The series A, with a rated voltage exceeding 100 kV, features active spark gaps that generate a residual voltage of at least 100 V per kV of rated voltage during the switching impulse test.

La tension résiduelle au choc de manoeuvre déterminée conformément à 8.4.2 ne doit pas dépasser la valeur indiquée dans le tableau 8.

Tenue aux chocs de courant de grande amplitude

Les parafoudres doivent supporter l'essai au choc de courant de grande amplitude décrit en

8.5.2 La valeur moyenne de la tension d'amorỗage à sec à frộquence industrielle (voir 8.2) mesurée avant et après cet essai ne doit pas varier de plus de 10 % L'examen des ộchantillons essayộs ne doit mettre en ộvidence ni perforation ni amorỗage des rộsistances variables, ni détérioration importante des éclateurs ou du circuit de répartition de tension.

Tenue aux chocs de courant de longue durée

Les parafoudres doivent supporter l'essai aux chocs de courant de longue durée décrit en

8.5.3, avec les paramètres indiqués dans les tableaux 5 (service intensif) ou 6 (service non intensif) Pour les deux types de parafoudres, la tension résiduelle aux chocs de foudre (voir

The measured values before and after the test should not vary by more than 10% For heavy-duty surge protectors, the dry industrial frequency ignition voltage, as referenced in section 8.2, must also not show a variation exceeding 10% before and after the test.

Fonctionnement des parafoudres

Les parafoudres doivent supporter l'essai de fonctionnement de 8.6, pendant lequel:

– le courant de suite doit s'établir à chaque application d'un choc et l'échantillon en essai doit interrompre le courant de suite chaque fois;

– la coupure finale du courant de suite doit se produire au plus tard à la fin de la demi- période suivant celle au cours de laquelle le choc est appliqué.

Following the operational test and after cooling the sample to a temperature close to ambient conditions, we resume the industrial frequency ignition tests and the measurement of residual voltage that were conducted prior to the operational test The average values should not vary by more than 10%.

Limiteur de pression

When a surge protector is equipped with a pressure limiting device, a failure of the surge protector should not lead to an explosive rupture of the casing This is confirmed by the tests outlined in section 8.7.

It is estimated that the tested sample meets the testing conditions if the envelope remains intact or breaks in a gentle manner, and if all the elements of the tested sample remain within the cylindrical enclosure.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

The residual voltage for the nominal discharge current is obtained from the curve outlined in section 8.4.1, ensuring it does not exceed the maximum residual voltage of the arrester as specified in table 8.

This requirement pertains to arresters rated at 10,000 A for light or heavy duty, or 5,000 A for series A, with a voltage rating exceeding 100 kV It specifically applies to arresters featuring active gaps, which are defined as gaps that produce a minimum of 100 V/kV of rating during the switching impulse test.

The switching impulse residual voltage determined according to 8.4.2 shall not exceed the value indicated in table 8.

Arresters must endure the high-current impulse test as specified in section 8.5.2, with the average dry power-frequency sparkover voltage (refer to section 8.2) showing no more than a 10% variation before and after testing Additionally, the examination of test samples should show no signs of puncture or flashover in the non-linear resistors, nor any significant damage to the series gaps or grading circuit.

Arresters shall withstand the long-duration current impulse test according to 8.5.3 and tables 5

For both heavy-duty and light-duty surge arresters, the lightning residual voltage must remain within ±10% before and after testing Additionally, for heavy surge arresters, the dry power frequency sparkover voltage should also not vary by more than ±10% during the same period.

Arresters shall withstand the operating-duty test described in 8.6 during which:

– follow-current shall be established by each test impulse and the test sample shall interrupt the follow-current each time;

– final interruption of the follow-current shall occur at least at the end of the half-cycle following that in which the impulse is applied.

After the operating-duty test and once the test sample has cooled to approximately ambient temperature, it is essential to repeat the power-frequency sparkover test and the residual voltage test The average values obtained from these tests should not differ by more than 10%.

When an arrester includes a pressure-relief device, it is designed to prevent explosive shattering of the housing in the event of failure, as confirmed by the tests outlined in section 8.7.

A test sample is considered successful if its housing remains intact or if it breaks in a non-explosive manner, with all components contained within the circular enclosure.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

Dispositifs de déconnexion

5.11.1 Tenue du dispositif de déconnexion

Lorsqu'un parafoudre est muni d'un dispositif de déconnexion (intégré ou séparé), ce dispositif doit supporter sans fonctionner chacun des essais suivants:

– essai aux chocs de courant de grande amplitude (8.8.2.1);

– essai aux chocs de courant de longue durée (8.8.2.2);

5.11.2 Fonctionnement du dispositif de déconnexion

Le temps de retard au fonctionnement du déconnecteur est déterminé, conformément à 8.8.3, pour trois valeurs du courant: 20 A, 200 A et 800 A (valeur efficace, ±10 %) Le dispositif doit assurer clairement une séparation effective et permanente.

CONDITIONS GÉNÉRALES DES ESSAIS

Echantillons destinés aux essais et mesures

Unless stated otherwise, all tests must be conducted using the same surge protectors, fractions, or device components These components should be new, clean, fully assembled, installed under conditions that closely resemble actual service conditions, and equipped with guard rings if they are typically used.

L'appareillage de mesure doit satisfaire aux exigences figurant dans la CEI 60060, et l'on admettra que la précision des valeurs obtenues répond aux prescriptions relatives aux essais.

Essais sous tension à fréquence industrielle

Tous les essais à fréquence industrielle doivent être effectués sous une tension alternative ayant une fréquence comprise entre les 48 Hz et 62 Hz et une forme d'onde pratiquement sinusọdale.

Essais sous pluie

Cet article est conforme aux recommandations relatives aux essais sous pluie figurant dans la

CEI 60060 recognizes that rain tests are not intended to replicate actual operating conditions Instead, they serve to ensure, based on accumulated experience, that the performance in service will be satisfactory.

Les essais doivent donner des résultats reproductibles dans un même laboratoire et dans des laboratoires différents.

These tests are conducted exclusively on outdoor surge protectors When specified, the test object must be subjected to a water spray of prescribed resistivity, generated by one or more appropriately positioned sprinklers The spray, consisting of fine droplets, should fall on the test object at an angle of approximately 45°, which can be determined through visual observation or by measuring the vertical and horizontal components of the spray flow.

The vertical component of the spray must be measured using a collector vessel with a horizontal opening area ranging from 100 cm² to 750 cm² When both the vertical and horizontal components are required simultaneously, the horizontal component should be measured with a similarly sized vertical opening vessel, oriented towards the nozzles The collector vessel should be positioned next to the test object, directly in front of the nozzles, and as close to the object as possible without collecting any splashes that may rebound.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

When an arrester is fitted or associated with a disconnector, this device shall withstand, without operating, each of the following tests:

– long-duration current impulse test (8.8.2.2);

The time delay for the operation of the disconnector is determined for three values of current:

20 A, 200 A and 800 A r.m.s., ± 10 % according to 8.8.3 There shall be clear evidence of effective and permanent disconnection by the device.

All tests must be conducted on identical arresters, arrester sections, or units, unless stated otherwise These components should be new, clean, fully assembled, and configured to closely resemble their operational setup, including the installation of grading rings when applicable.

The measuring equipment shall meet the requirements of IEC 60060, and the values obtained shall be accepted as accurate for the purpose of compliance with the relevant test clauses.

All power-frequency tests shall be made with an alternating voltage having a frequency between the limits of 48 Hz and 62 Hz, and an approximately sinusọdal waveshape.

This clause aligns with the IEC 60060 recommendations regarding wet tests Wet tests are not designed to replicate real operating conditions; instead, they serve as a benchmark based on accumulated experience, ensuring satisfactory service operation.

The test shall give reproducible results in the same and in different laboratories.

Tests must be conducted exclusively on outdoor arresters When specified, the test object will be exposed to a water spray with a defined resistivity, delivered by appropriately positioned nozzles The spray, made up of fine droplets, should impact the test object at an angle of approximately 45° to the vertical, determined through visual observation or by measuring the vertical and horizontal components of the precipitation rate.

The vertical spray component is measured using a collecting vessel with a horizontal opening area ranging from 100 cm² to 750 cm² For measurements requiring both vertical and horizontal components, the horizontal component is assessed with a vessel that has a similar vertical opening aimed at the nozzles The collecting vessel must be positioned on the side of the test object facing the nozzles and as close as possible to avoid collecting splashes.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

When testing objects taller than 50 cm, the spray flow rate must be measured at both ends and the center, with no individual measurement differing by more than 25% from the average of the three positions For objects 50 cm or shorter, measurements should only be taken at the center.

L'objet en essai doit être aspergé pendant au moins 1 min avant l'application de la tension.

To achieve more consistent results, it is essential to fully wet the tested object before applying the voltage, using water with the specified resistivity and temperature The characteristics of the spraying methods are detailed in Table 2, which includes two categories: one representing the practice commonly used in most European laboratories, and the other reflecting the practice in Canada and the United States It is advised that each national committee adopt only one of these two techniques.

Tableau 2 – Caractéristiques des essais sous pluie

Europe Canada et Etats-Unis d'Amérique

2 Résistivité de l'eau 10 000 Ω⋅cm ± 10 % 17 800 Ω⋅cm ± 10 %

3 Température de l'eau Température ambiante ± 15 °C Température ambiante ± 15 °C

4 Type de gicleur Voir figures 2a, 2b et 2c* Voir figure 2d*

5 Pression de l'eau Voir figures 2a, 2b et 2c* Voir figure 2d*

* Les figures mentionnées sont celles de la CEI 60060-1.

GENERAL

Scope

IEC 60099 outlines the specifications for surge protective devices intended for repeated use, aimed at limiting voltage surges in alternating current (a.c.) power circuits and interrupting power-follow current This standard specifically addresses surge arresters that incorporate single or multiple spark gaps in conjunction with one or more non-linear resistors.

Normative references

This International Standard references several normative documents that form part of its provisions For dated references, any amendments or revisions to these publications do not apply However, parties involved in agreements based on this Standard are encouraged to consider using the latest editions of the referenced normative documents In the case of undated references, the most recent edition of the cited normative document is applicable ISO and IEC members keep registers of currently valid International Standards.

IEC 60060: High-voltage test techniques.

IEC 60071-2:1976, Insulation co-ordination – Part 2: Application guide.

IEC 60099-3:1990, Surge arresters – Part 3: Artificial pollution testing of surge arresters.

DEFINITIONS

A surge arrester is a protective device that safeguards electrical equipment from high transient voltages, effectively limiting both the duration and often the amplitude of follow-current This term encompasses any external series gap necessary for the device's proper operation in service, regardless of whether it is included as an integral component.

NOTE Surge arresters are usually connected between the electrical conductors of a network and earth although they may sometimes be connected across the windings of apparatus or between electrical conductors.

2.2 non-linear resistor type gapped arrester: an arrester having a single or a multiple spark-gap connected in series with one or more non- linear resistors

* This type of equipment may be called "surge diverter" in some countries.

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

2.3 éclateur série d'un parafoudre intervalle réalisé (ou intervalles réalisés) entre des électrodes, placé en série avec la résistance variable (ou les résistances variables) du parafoudre

The variable series resistance of a lightning arrester is a nonlinear component that exhibits unique voltage-current characteristics It functions as a low-value resistance, allowing high discharge currents to pass through, which helps to limit the voltage across the arrester Conversely, at normal industrial frequency voltages, it acts as a high-value resistance, effectively limiting the magnitude of follow-up currents.

A 2.5 fraction of a lightning arrester is contained within an envelope that includes all its components, such as series spark gaps and variable resistors, in sufficient quantities to accurately represent the behavior of a complete lightning arrester during a specific test.

A lightning arrester element is a component fully enclosed within a housing, designed to be connected in series with other elements to achieve a higher rated voltage for the lightning arrester It is important to note that a lightning arrester element is not necessarily a fraction of a lightning arrester.

A pressure limiter for a lightning arrester is designed to regulate the internal pressure within the device, preventing explosive rupture of the housing due to prolonged current flow or internal arcing.

The assigned voltage of a surge protector is the maximum specified effective voltage at industrial frequency that it is designed to operate correctly between its terminals This voltage can be continuously applied to the surge protector without altering its operational characteristics.

2.9 fréquence assignée d'un parafoudre fréquence du réseau pour lequel le parafoudre est prévu

A disruptive discharge is a phenomenon linked to the failure of insulation due to electrical stress, resulting in a voltage drop and current flow This term refers to electrical breakdowns in solid, liquid, and gaseous dielectrics, as well as their combinations.

NOTE Une dộcharge disruptive dans un diộlectrique solide entraợne une perte permanente de la rigiditộ diélectrique; dans un diélectrique liquide ou gazeux, cette perte peut n'être que temporaire.

2.11 perforation décharge disruptive à travers un solide

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

2.3 series gap of an arrester: an intentional gap or gaps between spaced electrodes in series with the non-linear series resistor or resistors of the arrester

A non-linear series resistor in a surge arrester plays a crucial role by exhibiting unique voltage-current characteristics It provides low resistance to high discharge currents, effectively limiting the voltage across the arrester terminals Additionally, it acts as a high resistance during normal power-frequency voltage, thereby controlling the magnitude of follow-current.

A 2.5 section of an arrester is a fully assembled and appropriately housed component that includes series gaps and non-linear series resistors This configuration is essential to accurately simulate the performance of a complete arrester during specific testing conditions.

A unit of an arrester is a fully enclosed component that can be connected in series with additional units to create an arrester with a higher voltage rating It is important to note that a unit of an arrester does not have to be a section of the entire arrester.

A pressure-relief device in an arrester is essential for managing internal pressure, effectively preventing the explosive shattering of the housing This mechanism is crucial during prolonged follow-current or internal flashover events, ensuring the safety and integrity of the arrester.

The 2.8 rated voltage of an arrester refers to the maximum permissible root mean square (r.m.s.) value of power-frequency voltage that can be applied between its terminals for proper operation This voltage can be continuously applied to the arrester without altering its operating characteristics.

2.9 rated frequency of an arrester the frequency of the power system on which the arrester is designed to be used

Disruptive discharge refers to the phenomena that occur when insulation fails under electrical stress, characterized by a voltage collapse and current flow This term encompasses electrical breakdown in solid, liquid, and gaseous dielectrics, as well as their combinations.

NOTE A disruptive discharge in a solid dielectric produces permanent loss of electrical strength; in a liquid or gaseous dielectric the loss may be only temporary.

2.11 puncture a disruptive discharge through a solid

LICENSED TO MECON Limited - RANCHI/BANGALORE FOR INTERNAL USE AT THIS LOCATION ONLY, SUPPLIED BY BOOK SUPPLY BUREAU.

2.12 contournement décharge disruptive le long d'une surface solide

2.13 amorỗage d'un parafoudre décharge disruptive entre les électrodes des éclateurs d'un parafoudre

A unidirectional voltage or current wave grows rapidly to a maximum value without significant oscillations and then decreases, typically at a slower rate, to zero, potentially experiencing low-amplitude polarity reversals.

The parameters that define a voltage or current shock include polarity, peak value, rise time, and the duration to half-value on the tail.

2.15 choc rectangulaire choc qui croợt rapidement jusqu'à une valeur maximale, se maintient à peu prốs constant pendant une durée déterminée et tombe ensuite rapidement à zéro.

Les paramètres qui définissent un choc rectangulaire sont la polarité, la valeur de crête, la durée conventionnelle de la crête et la durée conventionnelle totale

2.16 valeur de crête d'un choc valeur maximale de la tension ou du courant de choc Lorsque des oscillations se superposent à la crête, voir les paragraphes 8.3.2, 8.5.2 e) et 8.5.3.2 c)

2.17 front d'un choc partie d'un choc précédant la crête

2.18 queue d'un choc partie d'un choc postérieure à la crête

2.19 choc de tension plein choc de tension qui n'est pas interrompu par un amorỗage, un contournement ou une perforation

IDENTIFICATION AND CLASSIFICATION

STANDARD RATINGS

REQUIREMENTS

GENERAL TESTING PROCEDURE

ESSAIS DE TYPE

TYPE TESTS (DESIGN TESTS)

Ngày đăng: 17/04/2023, 10:27