faiure mode desc iption of the method of faiur 3.16 faiure modes and efects analy sis FMEA proc d r used in design, develo ment an o e ations manag ement for the analy sisof p t ential f
Trang 1Wel integ rity —
Part 2:
phase
Inté rité du p its —
Partie 2: Inté rité du p its p ur la p ase o ération e lle
Fir t edition
2 14-0 -1
Refer ence n mb r
ISO/TS 165 0-2:2 14(E)
Trang 2COPYRIGHT PROTECTED DOCUMENT
© ISO 2014
A ll rig hts r eserved Unles otherw ise spe ified, nopar of this p blc tion ma y be r eprod c d or utilz d otherwise in an form
or b an me ns, ele tr onic or me hanic l, inclu in p oto opying , or posin on the internet or an intr anet , without prior
written permis ion Permis ion c n be r eq esed fr om either ISO at the ad r es below or ISO’s member bod y in the c u ty of
Trang 3Contents Pag e
F r eword vi
Introduction vii
1 Sc ope 1
2 Nor mati ve r eferenc es 2
3 Terms, definitio s and ab reviated terms 2
4 A bbreviated terms 8
5 Wel integ r ity manag ement system 10
5.1 Wel integ rity manag ement 1
5.2 Wel integ rity manag ement ys em 1
6 Wel integ r ity pol cy and str ateg y 10
6.1 Wel integ rity p lcy 1
6.2 Wel integ rity strateg y 1
7 Resourc es, les, sp nsibi ities and authority levels
11 7.1 Or ganizational structur e 1
7.2 Competency 1
8 Risk as es ment aspects of wel integ r ity manag ement
11 8.1 General 1
8.2 R isk as es ment considerations for wel integ rity 1
8.3 R isk as es ment te h iq es 1
8.4 A pplcation of risk as es ment in establshing monitoring , survei anc an maintenanc r equir ement 1
8.5 A pplcation of risk as es ment in the as es ment of wel integ rity anomales 1
8.6 Faiur e rate tr en ing 1
9 Wel barr ier s 18
9.1 General 1
9.2 Bar ie phioso hy 1
9.3 Wel b r ie envelo es 1
9.4 Wel b r ie element 1
9.5 Documenting of wel b r ie envelo es an wel b r ie elements 2
10 Wel c omponent perfor manc e stan ard 20 1 1 General 2
1 2 A cc ptanc c ite ia and ac eptable leak r ates 2
1 3 Measuring the leak r ate 2
1 4 Efe t of temperatur e 2
1 5 Dir ection of flow 2
1 6 Integ rity of b r ie s to con uct wel maintenanc and r ep ir 2
1 7 ESD/r elated safety sys ems 2
1 8 Wel comp nent o er ating pr oc d r e 24
11 Wel o erating and c ompo ent lmits 24 1 1 Wel o erating lmit 24
1 2 Wel lo d and tubular s r es analysis 2
1 3 Furthe wel-use r eview 2
1 4 En -of-lfe review 2
1 5 Manag ement of chang e to the o erating lmit 2
12 Wel monitor ing and sur vei lanc e 26 1 1 General 2
1 2 Monitoring an survei anc fr eq ency 2
1 3 Sh t-in wels 2
1 4 Suspen ed wels 2
Trang 41 5 Visual inspe tion 2
1 6 Wel log g ing 2
1 7 Corrosion monitoring .2
1 8 Cathodic prote tion monitoring 2
1 9 Erosion monitoring 3
1 1 Structural integ rity monitoring 3
13 A nnula pres ur e manag ement 32 1 1 General 3
1 2 Manag ement 3
1 3 Sour ces of ann lar pr es ure 3
1 4 A nn lus pr es ur e monitoring an tes ing 3
1 5 Fr eq ency of monitoring tubing an an ulus casing pr es ures 3
1 6 Identification of an an ulus pr es ur e sour ce 34
1 7 Max imum alowa le an ular surfac pr es ur e 34
1 8 Maintaining an ulus pr es ur e within the thr esholds 3
1 9 Review an chang e of MA ASP and thresholds .3
14 Wel hando er 38 14.1 General 3
15 Wel maintenanc e 39 1 1 General 3
1 2 Replac ment p rts 40
1 3 Fr eq ency of maintenanc 40
1 4 Comp nent tes ing methods 40
1 5 Leak tes ing 42
16 Wel integ r ity fai ur e manag ement 43
1 1 General 43
1 2 Integ rity faiur e ranking an prioritization 43
1 3 Wel faiur e model 43
17 Manag ement of chang e 44
1 1 General 4
1 2 Integ rity deviation pr oc s 45
1 3 Deviation fr om the wel pe formanc s an ar d 45
1 4 MOC Pr oc s
45 18 Wel rec ords and wel integ r ity r epor ting 46
1 1 General 46
1 2 Wel r ecor ds
47 1 3 Rep rts 47
19 P erformanc e mo itor ing of wel integ rity manag ement systems 48
1 1 Pe formanc monitoring an contin ous improvement 48
1 2 Pe formanc r eview 48
1 3 Key pe formanc in icator monitoring 5
20 Complanc e au it 51
2 1 General 5
2 2 Audit pr oc s 5
A nne x A (informative) el integ rity roles and spo sibi ities char t 53
A nne x B (informative)Example of c ompetency matrix 54
A nne x C (informative) Bar rier element ac c eptanc e table 55
A nne x D (informative) el bar rier s hematic 56
A nne x E (informative) Example — Perfor manc e standard for wel safety cr itical elements 58
A nne x F (informative) el barr ier elements, functio s and faiur e modes 59
A nne x G (informative) Example of pos ible wel le k paths 62
Trang 5A nne x H (informative)Example of le k testing gas lf val ves 64
A nne x I (informative)Le k rate deter mination calculatio s 66
A nne x J (informative) Wel operating lmits
69 A nne x K (informative) MA ASP calculatio s 71
A nne x L (informative) Example — A chang e in MA ASP calculatio 79
A nne x M (normative) Infor mation r eq ired of wel hando er 81
A nne x N (informative) F nction testing by anal ysing h ydraulc sig natur e 84
Biblog raphy 86
Trang 6ISO (he Int ernational Org nization for Stan ardization) is a worldwide fede ation of national s an ards
b dies (ISO membe b dies) The work of pr paring Int ernational Stan ards is normal y car ied out
through ISO t ech ical committ ees Each membe b dy int er st ed in a subje t for w hich a t ech ical
committ ee has be n es a lshed has the right t o be r pr sent ed on that committ ee Int ernational
org nizations, g ove nmental an non-g ove nmental, in laison with ISO, also take part in the work
ISO cola orat es closely with the Int ernational Ele trot ech ical C mmis ion (IEC) on al matt ers of
ele trot ech ical s an ardization
The proc d r s used t o develo this document an those int en ed for it furthe maint enanc ar
desc ibed in the ISO/IEC Dir ctives, Part 1 In p rticular the dife ent a pro al c it eria ne ded for the
dife ent ty es of ISO document should be not ed This document was draft ed in ac ordanc with the
edit orial rules of the ISO/IEC Dir ctives, Part 2 ( e www.iso.org dir ctives)
A tt ention is drawn t o the p s ibi ity that some of the element of this document ma be the subje t of
p t ent right ISO shal not be held r sp nsible for identifying any or al such p t ent right Detais of
any p t ent right identified d ring the develo ment of the document wi be in the Introd ction an / r
on the ISO ls of p t ent de larations r c ived ( e www.iso.org p t ent )
Any trade name used in this document is information given for the convenienc of use s an does not
cons itut e an en orsement
F or an ex lanation on the meaning of ISO spe if ic t erms and ex r s ions r lat ed t o conformity
as es ment, as wel asinformation a out ISO’s ad e enc t o the WTO principles in the Te hnical Bar ie s
t o Trade (TBT) se the folowing URL: F or word - Supplementary information
The committ ee r sp nsible for this document is ISO/TC 6 , Mate ial s, eq ipment a d ofsh r s truc tur s
fr petroleum, petrochemic al a d n tural g s indus tries , Subcommitt ee SC 4, Dril n a d produc tio
eq ipmen
ISO/TS 1 5 0 consis s of the folowing p rt , u de the g ene al title Wel integrit y:
— Part 2 : Wel integrit y fr the o e atio al p ase
The folowing p rt ar u de pr p ration:
— Part 1: Life cycle g verna c e ma u l
Trang 7This Te h ical Spe if ication has be n develo ed b prod cing o e ating comp nies for oi an g s, an
is int en ed for use in the petroleum an natural g s in us ry worldwide This Te h ical Spe if ication
is int en ed t o give r q ir ment an information t o the Wel Ope at or on mana ing wel int egrity for
the o e ational phase Furthe mor , this Te h ical Spe ification ad r s es the minimum complanc
r q ir ment for the Wel Ope at or, in orde t o claim conformity with this Te hnical Spe if ication
It is ne es ary that use s of this Te h ical Spe if ication ar awar that r q ir ment a o e those outlned
in this Te hnical Spe if ication can be ne ded for in ivid al a plcations This Te h ical Spe if ication is
not int en ed t o in ibit or r plac leg l r q ir ment ; it is in ad ition t o the leg l r q ir ment ; w he e
the e is a confl ct the leg l r q ir ment alway s takes pr c denc This can be p rticularly a plca le
w he e the e is in o ative or develo ing t ech olo y, with chang es in f ield or wel design o e ating
phioso hy
This Te hnical Spe if ication ad r s es the proc s of mana ing wel int egrity b as uring compl anc
t o the spe ified o e ating l mit for identif ied wel ty es, that ar defined based on ex osur of risk
t o peo le, environment, as et an r putation, sup ort ed b as ociat ed wel maint enance /monit oring
plans, t echnical r view s an manag ement of chang e
The folowing t erminolo y is used in this Te h ical Spe if ication
a) The t erm “ hal” or “ mus ” denot es a minimum r q ir ment in orde t o conform t o this Te h ical
Spe ification
b) The t erm “ hould” denot es a r commen ation or that w hich is advised but not r q ir d in orde t o
conform t o this Te hnical Spe if ication
c) The t erm “ ma ” is used t o in icat e a course of action pe mis iblewithin the l mit of the document
d) The t erm “conside ” is used t o in icat e a sugg es ion or t o advise
e) The t erm “can”is used t o ex r s p s ibi ity or ca a i ity
Trang 9Wel integ rity —
Part 2:
IMPORTANT The electronic fi e of this document co tains colo r w hich are considered to be
useful for the cor ect under tanding of the document User sho ld therefore co sider printing
this document using a colo r printer
This Te h ical Spe if ication pro ides r q ir ment an methods t o the oi an g s in us ry t o manag e
wel int egrity d ring the wel o e ational phase
The o e ational phase is conside ed t o ext en from han o e of the wel aft er cons ruction, t o han o e
prior t o a an onment This r pr sent only the pe iod d ring the lfe cycle of the wel w hen it is being
o e at ed an is i us rat ed in Figur 1
The sco eof the Te hnical Spe ification inclu es:
— A desc iption of the proc s es r q ir d t o as es an manag e risk within a defined framework The
risk as es ment proc s also a ples w hen deviating from this Te h ical Spe if ication
— The proc s of mana ing wel int egrity b o e ating wels in compl anc with o e ating l mit
for al wel ty es that ar def ined b sed on ex osur of risk t o peo le, environment, as et an
r putation The manag ement of wel int egrity is sup ort ed b as ociat ed maint enance / monit oring
plans, t ech ical r view s and the manag ement of chang e
— The as es ment of exis ing as et (wel s / fields) in orde t o s art the proc s of Wel Int egrity
Manag ement in ac ordanc with this t ech ical spe ification
— The han over proc s r q ir d w hen changing from one activity t o anothe d ring the o e ational
phase
The sco e of the Te h ical Spe ification a ples t o al wels that ar uti z d b the oi an g s in us ry,
r g rdles of their ag e, ty e or location
The sco eof the Te hnical Spe ification does NOT a ply t o:
— The pe iods d ring wel int ervention or work-o e activities but it DOES inclu e the r sult of the
int ervention an any imp ct hat this can ha et o the wel envelo ean the as ociat ed wel b r ie s
— The eq ipment that is r q ir d or used out ide the wel envelo e for a wel int ervention such as
wir -l ne or coi ed tubing or a pumping p ckag e
Trang 10Deig n
Figure 1 I lustratio of the s o e of this Technical Specificatio
2 Normati ve referenc es
The folowing document , in w hole or in p rt, ar normatively r fe enc d in this document an ar
in ispensa le for it a pl cation F or dat ed r fe enc s, only the edition cit ed a ples F or un at ed
r fe enc s, the lat es edition of the r fe enc d document ( inclu ing any amen ment ) a ples
ISO 1 417 :2 04, Petroleum a d n tural g s indus tries — S bs urfc e s afet y v lve sys tems — Des ig ,
ins talatio , o e ation a d r dr s s
API RP 14H, R ec ommended Prac tic e fr Ins talatio , Mainten nc e a d R ep ir o S rfc e S fet y Valves a d
Unde wate S fet y Valves Ofshor , Fifth Editio
3 Ter ms, definitions and abbreviated terms
F or the purp sesof this document, the fol owing t erms and def initionsa ply
3.1
A-ann lus
designation of an ulusbetwe n the prod ction tubing an prod ction casing
[ SOURCE:APIRP 9 , modified]
3.2
abando ed wel
pe manent subsurfac isolation of thewel
3.3
ambient pres ure
pr s ur ext ernal t o the wel head
Not e 1 t o entry: In the case of a surface wel he d, the pres ure is zero psig In the case of a subse welhe d, it is
eq al t o the hydrostatic pres ure of se water at the depth of the subse wel he d, in psig
[ SOURCE:APIRP 9 , modified]
Trang 11anomaly
con ition that dife s from w hat is ex e t ed or ty ical, or w hich dife s from that pr dict ed b a
theor tical model
3.5
B-annulus
designation of an ulus betwe n the prod ction casing an the next out er casing
Note 1to entry: The let er designation contin es in seq ence for e ch outer an ular space encou tered b tween
casing strings, u to an inclu ing the surface casing an con uctor casing strings
[ SOURCE:APIRP 9 , modif ied]
3.6
bre king of co tainment
br aking int o the containment sy st em of int egrity or b r ie envelo e
element hat pro ides s ructural sup ort for the wel , welhead an completion eq ipment, an oft en for
hole s a i ity for initial dri ing o e ations
Note 1 t o entry: This casing string is not designed for pres ure containment, but u on completion of the wel, it
may have a casing he d; therefore, it can b capa le of containing low an ular pres ures For subse an h brid
wel s, the low pres ure subse wel he d is normal y instaled on this casing string
[ SOURCE:APIRP 9 , modif ied]
below or close t o the prod ction p cker, or at he ca rock of a r se v ir t o isolat e the prod ction tubing
or casing from the prod cing r se v ir
3.12
deviatio
departur from a s an ard
3.13
do ble-block and ble d principle
o e ation with two v lves or seals, in se ies, or a v lve an a bln ca in al r lev nt, uti iz d flow p ths
int o an out of the wel that ar not con e t ed t o a closed sy st em
3.1
faiure
los of int en ed fu ction
Trang 12faiure mode
desc iption of the method of faiur
3.16
faiure modes and efects analy sis
FMEA
proc d r used in design, develo ment an o e ations manag ement for the analy sisof p t ential faiur
modes within a sy st em for clas ification of the severity an l kel ho d of the faiur s
3.1 7
faiure mode, ef ects, an c iticalty analy sis
ext ension of FMEA (3.1 ) that in ad ition inclu es an analysis of the c iticalties t o ev luat e the
se iousnes of the conseq enc s of a faiur ve sus the pro a i ity of it oc ur enc
3.18
fault
a normal, un esira le s at e of a sy st em element (e.g entir subsy st em, as embly, component) in uc d
b the pr senc of an impro e comman or a senc of a pro e one, or b a fai ur
Not e 1t o entry: Al failures cause faults, not al faults are caused by failure
act or proc s of trans e ring r sp nsibi ity for o e ating a wel from one compet ent party t o anothe ,
inclu ing b th cust ody t o o e at e (c rtificat e) an the r q isit e data an document w hich desc ibe the
wel cons ruction
3.21
hazard
sour e of p t ential harm or a situation with a p t ential t o ca use los (any neg tive conseq enc )
[ SOURCE:APIRP 9 , modified]
3.22
hy brid wel
wel dri ed with a subsea welhead an complet ed with a surfac casing head, a surfac tubing head, a
surfac tubing hang er, an a surfac Chris mas tr e
Not e 1 t o entry: A h brid wel can have either one (single-b re prod ction riser) casing string or two (d al-b re
prod ction riser) casing strings brought u from the subse wel he d an tied b ck to the surface eq ipment
These wel s are ty icaly located on flo ting prod ction platorms, such as spar or T Ps
[ SOURCE:APIRP 9 , modified]
Trang 13major hazard
hazard (3.2 ) with a p t ential for causing major ac ident , i.e inv lving fatalty d e t o fir or ex losion,
major polution, multiple fatalties, or seve e damag e t o the ins al ation
gr at es pr s ur that an an ulus can contain, as measur d at the welhead, without compromising the
int egrity of any element of that an ulus, inclu ing any ex osed o en-hole formations
3.30
the o eratio al phase
is conside ed t o ext en from han o e of the wel aft er cons ruction, t o han o e prior t o a an onment,
in icating the l fe cycle of the wel w hie being o e at ed
3.31
Wel Operator- mposed annulus pres ure
casing pr s ur that is Wel Ope at or-imp sed for purp ses such as g s lf , wat er inje tion, the mal
insulation, et c
[ SOURCE:APIRP 9 , modif ied]
3.32
performance standard
s at ement, w hich can be ex r s ed in q altative or q antitative t erms as a pro riat e, of the pe formanc
r q ir d of a safety-c itical element in orde t o ensur the safety an int egrity of the ins alation
3.33
pres ure test
a plcation of a pr s ur from an ext ernal sour e (non-r se v ir pr s ur )t o asc rtain the me hanical
an seal ng int egrity of a comp nent
3.34
primary wel bar ier
firs wel b r ie envelo e that the prod c d an / r inje t ed fluids contact and that is in-plac an
fu ctional d ring wel o e ations
3.35
pro uction casing
in e mos s ring of casing in the wel
Note 1to entry: Prod ction fluids enter the casing elow the prod ction packer an contin e to the surface through
the prod ction string A t a minimum, the prod ction casing is rated for the ma imum anticipated pres ure that
can b encou t ered from the prod ction zone
[ SOURCE:APIRP 9 , modif ied]
Trang 14pro uction riser
on fix ed platorms, the casing s rings rising from the seaflo r t o the welhead or, on hy rid wels, the
casing s rings at ached t o the subsea wel head rising from the seaflo r t o the surfac welhead
[ SOURCE:APIRP 9 , modified]
3.37
pro uction string
completio string
s ring consis ing primari y of prod ction tubing, but also inclu ing ad itional component such as the
surfac -controled subsurfac safety v lve ( SCS V), g s lf man r ls, chemical inje tion an ins rument
p rt , lan ing nip les, and packe or p cker seal as embles
Not e 1 to entry: T e prod ction string is ru inside the prod ction casing an used to con uct prod ction fluids
t o the surface
[ SOURCE:APIRP 9 , modified]
3.38
pro uction tubing
tubing that is ru inside the prod ction casing an used t o convey prod c d fluidsfrom the hydrocarb
n-bearing formation t o the surfac
Not e 1 t o entry: T bing can also b used for injection In some h brid wel s,for e ample,tubing is used as a con uit
for g s for artif iciallif b low a mu line pack-of tubing hang er to isolate the g s-lif pres ure from the prod ction
riser
[ SOURCE:APIRP 9 , modified]
3.39
relabiity
pro a i ty that eq ipment can pe form a spe ified function u de s at ed con itions for a given pe iod
sy st ematic analy sis of the risks from activities an a rational ev luation of their signif icanc b
comp rison a ains pr det ermined s an ards, targ et risk levels or othe risk c it eria
Not e 1t o entry: Risk as es ment is used t o determine risk manag ement priorities
3.4 2
safety c itical element
p rt of the ins alation or plant that is es ential t o maintain the safety an int egrity of the ins al ation
Not e 1 to entry: This inclu es an item that is inten ed to prevent or limit the efect of a major hazard or which,
u on failure, can cause or contribute substantial y to a major hazard afecting the safety or inte rity of the
instal ation
Note 2 to entry: S fety-c itical elements inclu e me sures for prevention, det ection, control an mitig tion
(inclu ing per on el prot ection) of hazards
Note 3to entry: Within the cont ext of this Tech ical Specif ication, an instal ation is considered as a wel
Trang 15seco dary wel bar ier
se on set of b r ie element that pr vent flow from a sour e
[ SOURCE:APIRP 9 , modif ied]
wel complet ed with a subsea wel head an a subsea tr e
[ SOURCE:APIRP 9 , modif ied]
casing that is run inside the con uct or casing t o prot ect shal ow wat er zones an weake formations
an ma be c ment ed within the con uct or s ring an is oft en c ment ed b ck t o the mu -l ne or surfac
Note 1to entry: T e surface welhe d is normaly instal ed on this string for surface wel s
[ SOURCE:APIRP 9 ]
3.48
suspended wel
wel that has be n isolat ed from the prod cing r se v ir via a de p-set down-hole isolation devic
(me hanical or c ment plug)
Note 1to entry: Components a ove the isolation device are no long r considered flow wett ed
3.49
sustained annulus pres ure ( SAP)
pr s ur in an ann lus that
a) r buids w hen bled down;
b) is not caused solely b t empe atur fluctuations; an
c) is not a pr s ur that has be n imp sed b the Wel Ope at or
[ SOURCE:APIRP 9 , modif ied]
3.50
thermal y induced annulus pres ure
pr s ur in an ann lus g ene at ed b the mal ex ansion or contraction of tra ped fluids
[ SOURCE:APIRP 9 , modif ied]
3.5
verification
ex mination, t es ing, au it or r view t o confirm that an activity, prod ct or se vic is in ac ordanc
with spe ified r q ir ment
3.52
wel bar ier element
one or seve al depen ent comp nent that ar combined t o form a b r ie envelo e that, in combination,
Trang 16wel bar ier en elo e
combination of one or seve al wel b r ie element that t og ethe cons itut e a method of containment of
fluids within a wel that pr vent u controled flow of fluids within, or out of, a wel
wel o eratio al phase
p rtion of the wel’ s l fe cycle s arting at the han o e of the wel aft er cons ruction, unti the wel’s
pe manent a an onment
Not e 1t o entry: T is inclu es prod ction, injection, o servation, closed-n an suspen ed wel statuses
Not e 2t o entry: Wel intervention activities, either rig b sed or rig-les ,that involve bre king containment at he
C ristmas tre or welhe d are not part of the wel operational p ase
3.59
wel o erating lmits
combination of c it eria that ar es a l shed b the Wel Ope at or t o det ermine ac epta le wel int egrity
pe formanc for the wel ’ s l fe
3.60
wel status
wel’ s cur ent o e ational fu ction i.e flowing, closed in, suspen ed, un e g oing cons ruction or
a an oned
4 A bbreviated terms
ALARP as low as re sona ly practica le
API American Petroleum Institut e
ASV an ulus safety valve
BOP blow out preventer
BS&W b se sediment & water
DASF driling adapt or spo lflang
DHSV Down-hole safety valve
EVP emerg ncy valve pilot
Trang 17FMEA failure modes an efects analy sis
FME A failure-mode an efects an c iticality analysis
BOP an ulus safety valve
BS&W blow out preventer
NORSO Nor k S kkels K on ur anseposisjon
NP national pipe thre d
OC o served casing pres ure
OEM original eq ipment man facturer
QRA q antif ia le risk as es ment
RACI responsible /ac ou ta le /consulted/informed
KPI key performance in icator
MAASP ma imum alowa le an ular surface pres ure
MOC manag ement of chang
ROV remotely-operated vehicle
SC safety c iticalelement
SAP sustained an ulus pres ure
SCS V surface control ed subsurface safety valve
S CSV subsurface controled subsurface safety valve
S SV sub surface safety valve
S V surface safety valve
WIMS wel inte rity mana ement system
WOE wel operating limits
NOTE NORSOK stan ards are developed by the Norwegian petroleum in ustry t o ensure adeq at e
safety, value ad ing an cost efectivenes for petroleum in ustry developments an operations
Trang 185 Wel integ r ity manag ement system
5.1 Wel integ rity manag ement
The manag ement of wel int egrity is a combination of t ech ical, o e ational an org nizational proc s es
t o ensur a wel ’ s int egrity d ring the o e ating phase of the l fe cycle
5.2 Wel integ rity manag ement system
The Wel Ope at or shal ha e an a pro ed wel int egrity manag ement sy st em (WIMS)that is a pled t o
al wel s un e their r sp nsibi ty, i.e the wel invent ory
As a minimum, the fol owing element shal be ad r s ed:
a) wel int egrity p l cy an s rat eg ;
b) r sour es, roles, r sponsibi ities an authority levels;
c) risk as es ment aspe t of wel int egrity manag emen
d) wel b r ie s;
e) wel component pe formanc s an ards;
f) wel o e ating lmit ;
g) wel monit oring an survei lanc ;
h) an ular pr s ur manag emen
i) wel hando e ;
j) wel maint enanc ;
k) wel int egrity faiur manag emen
l) manag ement of chang e;
m) wel r cords an wel int egrity r p rting;
n) pe formanc monit oring of wel int egrity manag ement syst ems;
o) complanc a udit
6 Wel integ r ity pol cy and strateg y
6.1 Wel integ rity pol cy
The Wel Ope at or shal ha e a p l cy defining it commitment an o lg tions t o safeguard health,
environment, as et an r putation b es a lshing an pr se ving wel int egrity This wel int egrity
p lcy shal be en orsed at a senior level within the Wel Ope at or org nization
The Wel Ope at or wel int egrity manag ement sy st em (WIMS) shal clearly in icat e how the p l cy is
int erpr t ed an a pled t o wel int egrity
6.2 Wel integ rity strateg y
The Wel Ope at or shal define the high level s rat egic measur s t o w hich it is commit ing in orde t o
achieve the r q ir ment of the as et (wel)int egrity p lcy
Trang 19Such s rat egic measur s ma inclu e an outlne of how the Wel Ope at or es a l shes
— busines plans and priorities,
— r sour ing plans, an
— bu g eting
in sup ort of it wel int egrity manag ement o je tives
This high-level s rat eg shal manifes it elf in, an be consist ent with, the b dy of the wel int egrity
manag ement y st em (WIMS)
7 Resour c es, les, responsibi ities and authority lev ls
7.1 Or ganizational structure
Each Wel Ope at or shal ensur that ufficient r sour es in their org nizations ar a ai a le t o manag e
wel int egrity efe tively d ring the o e ational lfe cycle of the Wel Ope at or entir wel invent ory
Each Wel Ope at or shal define theroles an r sp nsibi ties for al profes ional, supe visory, o e ational
an maint enanc pe sonnel r q ir d t o manag e the wel int egrity sy st em R oles an r sp nsibi ties
should bedocument ed, for ex mple in an RACI matrix ( e Annex A)
The Wel Ope at or shal as ign the role of a wel int egrity t echnical authority / subje t matt er ex e t
p sitioned out ide of o e ations lne manag ement, t o pro ide an in epen ent t ech ical r view an
r commen ations on wel int egrity is ues
Each Wel Ope at or shal ensur that their pe son el (emplo e s an contract ors) w ho p rticipat e in
wel int egrity activities ar compet ent t o pe form the tasks as igned t o them
Each Wel Ope at or shal def ine wel int egrity pe sonnel compet ency r q ir ment t o ensur that wel
int egrity activities ar car ied out in a manne w hich is both safe an efficient as r g rds prot ection
of health, the environment an as et A compet enc pe formanc r cord should be maintained that
demons rat escomplanc
NOTE Competency can b g ined through a combination of; ed cation, training pro rammes, ment oring,
self-stu y an on-the-jo training (ransfer of e perience /e pertise)
An ex mple of a compet ency matrix is given in Annex B
8 Risk as es ment aspects of wel integ rity manag ement
t ool t o as is in the manag ement of wel int egrity It identif ies fact ors that should be conside ed an
introd c s ev luation t ech iq es that ma be a pled w hen using risk as es ment as the basis for
— es a l shing monit oring, survei lanc an maint enanc r gimes for wel bar ie element that ar
aimed at minimizing the p t ential risks of any imp irment t o wel b r ie envelo es;
— det ermining w hich of the b r ie element ar conside ed safety c itical element that r q ir
pe formanc s an ards and as uranc tasks that conf irm complanc t o the pe formanc s an ard;
— det ermining an a pro riat e course of action t o ad r s any wel anomales that ar encou t er d
d ring these monit oring, survei lanc an maint enanc r gimes;
Trang 20— es a l shing risk of los of containment conside ing, wel ty e, pr s ur , ef luent, out low pot ential,
location, environment a ains b r ie r d n ancy
8.2 Risk as es ment c onsiderations for wel integ rity
In 8.2.1 t o 8.2.5 ar given the minimum conside ations that should be ac ou t ed for w hen as es ing
risks as ociat ed with wel int egrity in the o e ational phase
8.2.1 L catio
8.2.1.1 The wel location can ha ve a bearing on the risks pr esented b a wel in te ms of
— g eo ra hical location, e.g onshor or ofshor , urb n or r mot e,
— faci ity wel ty e, e.g platorm, subsea, man ed or u man ed faci ity location,
— wel conc ntration, e.g single wel, multiplewel clust er
8.2.1.2 Consideration should be g iven to the folowing :
— pro imity of the wel t o workers an the p t ential efe t on worke health an safety of any
imp irment t o a wel b r ie envelo e p sed b any anomaly;
— pro imity of the wel t o the environment an the p t ential efe t on the environment of any
imp irment t o a wel b r ie envelo e p sed b any anomaly;
— pro imity of the wel t o othe wels an infras ructur an the p t ential efe t on such wel s an
infras ructur of any impairment t o a wel b r ie envelo e posed b any anomaly;
— as es ment of any comp u ded risk posed b adjac nt wel s or infras ructur also ha ing some
form of impairment of their own b r ie envelo es;
— societal imp ct of any imp irment t o the wel b r ie envelo ep sed b an anomaly;conside ation
of such imp ct should ca tur not only health, safety an environmental conside ations t o society
at larg e, but also any e onomic imp ct t o society at larg e;
— a i ity t o ac es the wel in orde t o
— monit or it con ition,
— pe form maint enanc ,
— pe form r p irs;
— a i ity t o ac es the ar a in the vicinity of the wel in orde t o mitig t e the efe t of any p t ential
los of int egrity;
— a i ity an time t o dri l a r l ef wel, if r q ir d
8.2.2 Outlow potential
The a i ity of the wel fluids t o flow t o the surfac or int o an u desira le subsurfac location within
the welb r , with or without the aid of artif icial lf , pot ential y has a bearing on the ma nitu e of the
conseq enc s as ociat ed with a los of wel int egrity
Conside ation should be given t o the imp ct ofthe folowing:
— pot ential sour es an leak-p ths for out low ( ubing, ann lus, control l nes, g s-l f v lves);
— out low medium (from r se v irs an also l mit ed volumes, e.g g s lf g s);
Trang 21— faiur of othe b r ie element ;
— rat es;
— volumes;
— pr s ur s;
— t empe atur s;
— d ration o e w hich the wel is a le t o sus ain flow;
— efe t from ofset wels, e.g the efe t that an ofset inje tion wel has on sus aining r se v ir
pr s ur supp rt t o a prod c r t o en anc it a i ity t o flow
8.2.3 Wel efluent
The comp sition of the wel s r am has a bearing on the risks p sed b any wel , b th in t erms of the
efe t of wel ef luent on imp irment of the wel b r ie envelo es an the health, safety, environmental
an societal risks as ociat ed with p t ential discharg e of these ef luent in the event of a los of wel
int egrity
The efe t of folowing fluid comp nent within the wel s r am comp sition should be conside ed in a
risk as es ment as ociat ed with any p t ential anomaly:
— sour comp nent ;
— cor osive comp nent ;
— poisonous comp nent ;
— car inog enic comp nent ;
— flamma leor ex losive component ;
— e osive comp nent ;
— asphy iating comp nent ;
— comp tibi ty betwe n comp nent ;
— formation of emulsion, scale, wa an hydrat e dep sit
8.2.4 Ex ter nal envir onment
8.2.4.1 Ex ter nal r isk to c onsider
In ad ition t o wel int egrity risks influenc d b out low p t ential an wel ef luent , the e ar p t ential
wel int egrity risks posed b ex osur of wel b r ie s t o ext ernal environment that can be u r lat ed
t o the prod ction or inje tion int erv ls t o w hich these wel s ar con e t ed
The folowing efe t should beconside ed:
— ext ernal cor osion of s ructural comp nent such as con uct or casing, surfac casing and welhead
ex osed t o theatmosphe e ( i.e d e ex osur t o weathe );
— ext ernal cor osion of s ructural comp nent such as con uct or, surfac casing an welhead
ex osed t o themarine environment ;
— ext ernal cor osion of casing s rings ex osed t o cor osive fluids in subsurfac locations (e.g aq ife s
containing cor osive fluids, incomp tibi ity betwe n an ulus fluid an t op up fluid, cor osive t op up
fluid);
Trang 22— fatigue of s ructural component d e t o cycl c lo ding (e.g motion of welheads, con uct ors,
tie-back casing s rings, et c d e t o the action of wa es an cur ent ofshor , welhead motion d e t o
int eractions betwe n lo ds imp sed b BOPs/rise s an wel heads d ring any dri ing or work-o e
activities);
— imp ct of cyclc an / r the mal lo ding of wel s on soi s r ngth an the a i ty of sois t o pro ide
s ructural sup ort t o the wel ;
— ext ernal lo ds on wels as ociat ed with earth mo ement (e.g r se v ir compaction, earth uakes,
t ect onic motion as ociat ed with fault an motion of d ctie mat erials such as salt ormations);
— me hanical imp ct as ociat ed with dro ped o je t (from faci ities, ves els, vehicles or othe
eq ipment in the pro imity of the wels);
— me hanical imp ct as ociat ed with col sions (e.g b ships or vehicles)
8.2.4.2 Ex ternal r isk mitigations
Some ex mplesof risk an mitig tionsd e ext ernal risk:
— subsea wel s:
— risk identif ied: col ision with fishing traw le s’ anchor chains /net ,
— mitig tion:defle t or ins aled on subsea wel head;
— ofshor wels:
— risk identif ied: dro ped o je t , dri ing BOP of cantieve rig,
— mitig tion:weathe de k a o e welheads pro ided with a dro lo d ca a i ty;
— onshor wel s:
— risk identif ied: col ision imp ct with mo ing vehicle,
— mitig tion:imp ct b r ie splac d aroun wel head
8.2.5 Redun ant systems
R ed n ant sy st ems cons itut e the comp nent within the wel that pro ide ad itional safeguards t o
mitig t e p t ential imp irment t o wel b r ie envelo es
Conside ation should be given t o the folowing w hen as es ing how a r d n ant syst em afe t wel
int egrity risks:
— ext ent t o w hich the r d n ant sy st ems can be o e at ed in epen ently of a sy st em that could be
imp ir d;
— r sp nse timeof r d n ant y st ems;
— se vic con itions for w hich the r d n ant sy st ems ar designed, r lative t o those of the sy st em
that can be imp ir d;
— method ofo e ation of the r d n ant sy st ems, e.g man al or a ut omatic
Ex mples of r d n ant sy st ems inclu e an out er an ulus ( if rat ed), ad itional inlne v lves an
ad itional ESD sy st ems
Trang 238.3 Risk as es ment techniques
Risk as es ment t echniq es ar used t o as es the ma nitu e of wel int egrity risks w hethe these ar
p t ential risks, b sed on an as es ment of p s ible faiur modes, or actual risks, b sed on an as es ment
of an anomaly that has be n identif ied
Dife ent ty es of t ech iq es ma be a pled as de med a pro riat e b the Wel Ope at or for the
p rticular wel int egrity is ue that it is ne es ary t o as es A risk as es ment proc s ty icaly inv lves
— identif ication of the ty es of wel anomaly an faiur -r lat ed event that ar p s ible for the wel()
that ar being as es ed;
— det ermination of the pot ential conseq enc s of each ty e of wel faiur -r lat ed even the
conseq enc s can be t o health, safety, environmental or societal or a combination of these fact ors;
— det ermination of the lkel ho d of oc ur enc of the even
— det ermination of the ma nitu e of the risk of each ty e of wel faiur -r lat ed event b sed on the
combined efe t of conseq enc an l kel ho d
The as es ment of any wel faiur -r lat ed event is normaly depict ed on a risk as es ment matrix (an
ex mple of a “5 b 5” matrix is given in Figur 2) such that risk can be cat eg oriz d or ranked b sed on
the combined efe t of conseq enc an l kel ho d of oc ur enc
sometimes
seldom
rareoften
Inc easing C nseq ence
Figure 2 — Example of a Risk as es ment matrix (RAM)
The Wel Ope at or shal det ermine
— a pro riat e levels /definitions for conseq enc ( eve ity) an l kel ho d of oc ur enc (pro a i ity)
cat eg ories on the risk as es ment matrix ax es ( imple ex mples of cat eg oriesar shown in Figur 2);
inc easing levels of conseq enc an / r l kel ho d r fle t inc easing levels of risk (highe risk
ran ings);
— a pro riat e levels /definitions for the risk r gions (b x es) within the risk as es ment matrix
Trang 24A q al tative risk as es ment ma be used w he e the det ermination of b th conseq enc an lkel ho d
of oc ur enc is larg ely b sed on the ju g ement of q al fied and compet ent pe sonnel b sed on their
ex e ienc
Q uantifia le risk as es ment (QRA) is anothe t ech iq e that ma be a pled t o as es wel int egrity
risks This t ech iq e also as es es b th conseq enc an pro a i ity but uses information from
data ases on wel int egrity faiur s t o q antify the pro a i ity of a given event oc ur ing
Faiur -mode an efe t an c itical ty analy sis(FMECA) can also be used t o det ermine wel int egrity
risks FMECA is p rticularly useful in es a lshing the ty es of comp nent faiur s that can oc ur, the
efe t on the wel b r ie envelo e( ) an the l kel ho d ofsuch faiur s oc ur ing This information can
then be used t o as is design impro ement an in es a lshing the ty e an fr q ency of monit oring,
survei lanc an maint enanc r q ir d t o r d c the risk of the faiur s modes identif ied as p rt of the
FMECA
Detaied risk as es ment methods an t echniq es can be fou d in ISO 1 776, ISO 3 00 an ISO/IEC 3 0 0
8.4 A ppl cation of risk as es ment in establ shing monitoring, survei lanc e and
mainte-nanc e requirements
Monit oring, survei lanc an maint enanc t echniq es for wel s ar desc ibed in Clauses 14 an 1 The
det ermination of a pro riat e t ech iq es, inclu ing the r q ir d fr q enciesat w hich these t ech iq es
ar a pl ed, should ideal y be sup ort ed b an as es ment of the wel int egrity risks
The risk as es ment normaly inv lves folowing the proc s es desc ibed in 8.3 t o identify an ran the
risks from p t ential wel faiur -r lat ed event
The risk as es ment is used t o help es a lsh
— ty es an fr q ency of monit oring;
— ty es an fr q ency of survei lanc ;
— ty es an fr q ency of maint enanc ;
— a pro riat e ve ification t es ac eptanc c it eria
Onc thesep ramet ers ar es a lshed, they ar used t o r d c the risks of the identif ied p t ential wel
faiur r lat ed event t o ac epta le levels
The e should, the efor , be a clear lnkag e between the o e al risk prof ile of any given wel ty e an
it monit oring, survei lanc , maint enanc and ac eptanc r gime This normaly means that wel s with
highe risks of wel fai ur r lat ed event r q ir mor fr q ent maint enanc in orde t o r d c risk
It is ne es ary for the Wel Ope at or, w hen using a risk-b sed a pro ch, t o ma for each wel ty e, the
comp nent that ma r q ir monit oring, survei lanc an maint enanc in a risk b sed model The risk
b sed model ( e API RP 5 0 for risk-b sed inspe tion ex mples) is used t o identify the ma nitu e of
the risk pr sent ed b the faiur of a single component ( initial y as uming no monit oring, survei lanc
or maint enanc ) an ma s this risk on a risk as es ment matrix Onc the risks for al comp nent ar
ma ped on the matrix, isometric lnes ( i.e l nes plott ed on the matrix that r pr sent the same level of
risk)can then be used t o help def ine a pro riat e monit oring, survei lanc an maint enanc fr q encies,
t og ethe with an ac eptanc r gime for such activities, t o mitig t e the identif ied risks Figur 3 gives an
ex mple of a risk matrix used for this purp se
Trang 25Risk based maintenanc & inspection matrix
C nseq enc of fai ur e
in v lve
Figure 3 Example of risk-based model as appl ed for wel integrity as urance activities
8.5 A ppl cation of r isk as es ment in the as es ment of wel integ rity anomal es
If an anomaly has the p t ential t o afe t the def ined o e ating l mit of the wel, the risks p sed b
such an anomaly should be as es ed an ad r s ed The Wel Ope at or ma alr ady have es a lshed
the activities that it is ne es ary t o implement t o ad r s the anomaly b sed on exis ing practic s or
proc d r s
The folowing st eps desc ibe the ty ical proc s that should be folowed t o es a lsh the wel int egrity
risk
— Identify thewel int egrity anomaly
— As es w hethe the anomaly p ses pot ential risks from wel fai ur -r lat ed event or can lead t o
furthe anomales that p se such risks
— As es the conseq enc s an lkelho d of each risk
— As es the ma nitu e of each risk (eq al t o the prod ct of the conseq enc an the lkelho d)
as ociat ed with each event, pr fe a ly using a risk as es ment matrix
— As es w hat actionsor activities can be implement ed that mitig t e or r d c each risk
— As es the conseq enc , lkelho d an ma nitu e of each risk aft er implementation of mitig ting
actions or activities, pr fe a ly using a risk as es ment matrix
— As es w hethe each r sid al risk ( i.e the ma nitu e of the risk aft er any risk mitig tion/r d ction
measur sar implement ed) is t ole a le enough t o pe mit the wel t o r main o e ational
The ma nitu e of risk (prior t o implementation of any risk r d ction measur s) should be used in
det ermining the actions that ar a pro riat e t o ad r s the anomaly Gene aly, the highe the risk, the
gr at er the priority an / r r sour es that ar r q ir d, a ply
8.6 F i ur e rate tr ending
Tr n ing of faiur rat es a ains time can also help t o det ermine inspe tion fr q encies for c rtain
clas es or models of eq ipment an can influenc futur r plac ment eq ipment sele tion
Trang 26The faiur rat e can also chang e depen ing on the ag e of the comp nen this is depict ed in the curve in
dis inct ar as:
— early l fe (de r asing faiur rat e), w hen faiur is d e t o component q alty;
— useful l fe (cons ant aiur rat e), w hen faiur is d e t o normal in-se vic s r s ;
— wear-out ( inc easing faiur rat e), w hen faiur is d et o comp nent wear an t ear
Figure 4 — C mpo ent faiure rate as a functio of time
Q ualty faiur s (or early fai ur s) ar ty icaly as ociat ed with design or fa rication e ror (e.g faulty
mat erial, b d as embly, et c ) Wear-out faiur s ar ty icaly as ociat ed with such faiur me hanisms
as metal los , the mal fatigue, c e p, et c
The pe iod w he e the faiur rat e is cons ant is the pe iod of the component’s useful l fe During this
pe iod, a high con denc level can be a pled t o the component’ s pro a le time t o faiur an a pro riat e
se vic an r plac ment int erv ls det ermined
9 Wel bar ier s
Wel b r ie s ar the corne st one of mana ing wel int egrity Clause 9 discus esthe wel b r ie s, wel
b r ie envelo es, wel b r ie element , wel b r ie phioso hy an how these ar used b the Wel
Ope at or in their wel int egrity manag ement y st em
The primary purp se of wel int egrity manag ement is t o maintain ful control of fluids at al times
t o pr vent the los of containment t o the ext erior of the welb r , the environment an formations
penetrat ed b the welb r This is achieved b emplo ing an maintaining one or mor wel b r ie
envelo es
9.2 Barr ier phi osophy
The Wel Ope at or shal def ine a b r ie phi oso hy for each of the wel ty es within the WIMS
Trang 27An ex mple of a wel b r ie phioso hy is given below.
— If a wel is ca a le of sus ained flow t o the surfac or t o an ext ernal environment d e t o r se v ir
pr s ur (natural or maintained), at leas two in epen ently t est ed wel bar ie envelo es should
be maintained
— If a wel is not ca a le of natural flow t o the surfac , one (1) me hanical wel b r ie envelo e ma
be maintained This is b sed on the principle that the hydros atic column of the wel b r fluids
pro ides the primary b r ie envelo e it elf In these cases, a risk analy sis should be pe formed
t o confirm that one me hanical b r ie envelo e is adeq at e t o maintain containment, inclu ing
subsurfac flow
9.2.1 Bar rier when breaking c ontainment
— A minimum of two b r ie s that can be indepen ently ve if ied ar r q ir d prior t o br aking
containment for r pairs
— The alowa le leak rat e through the sum of these two b r ie s should be z ro or bub le-tight If
the eis a smal leakag e rat e through one of these b r ie s, a double block-and-ble d sy st em should
be in plac so that the pr s ur is cons antly maintained at z ro
9.3 Wel bar rier envelopes
The pr se v ation, maint enanc , inspe tion an t es ing of wel b r ie envelo es ar key aspe t of the
manag ement of wel int egrity throughout the o e ational phase of a wel
The Wel Ope at or shal k ow the s atus of each wel bar ie envelo e an shal maintain al wel b r ie
envelo e() ac ording t o the wel ’s int en ed wel o e ating l mit
In cases w he e a b r ie envelo e cannot be maintained ac ording t o the original design spe ification,
the Wel Ope at or shal pe form a risk as es ment t o es a lsh the r q ir d controls t o mitig t e the risk
During the o e ating phase of a wel, b u dary con itions or wel usag e ma chang e This r q ir s a
r -ev luation of the b r ie envelo es an thewel o e ating l mit
A wel b r ie envelo e shal
— withs an the ma imum anticipat ed dife ential pr s ur s t o w hich it can besubje t ed;
— be leak- an function-t est ed, or ve if ied b othe methods;
— fu ction as int en ed in the environment (pr s ur s, t empe atur , fluids, me hanical s r s es)that
can be encou t er d throughout it entir l fe cycle
Onc a wel has be n cons ruct ed an han ed o e for o e ation, the n mbe of b r ie envelo es
wi have be n det ermined d ring the wel’ s design an shal be document ed through a wel han o e
proc s
9.4 Wel bar rier element
9.4.1 A wel b r ie envelo e ma y include me hanical wel b r ie elements
F or a wel b r ie element t o be conside ed o e ational, it should be ve if ied an maintained through
r gular t es ing and maint enanc The location an int egrity s atus of each wel b r ie element should
be k own at al times ( e Annex C)
9.4.2 F r a wel in o eration, the primary wel b r ie envelo e typicaly constitutes the folow ing wel
b r ie elements:
— ca rock,
Trang 28— casing c ment,
— prod ction casing,
— prod ction p cke ,
— tubing
— SCS V or Chris mastr e mast er v lve
9.4.3 T e se on ary wel b r ie typicaly constitutes the folowing wel b r ie elements:
— formation,
— casing c ment,
— casing with hang er an seal as embly,
— welhead with v lves,
— tubing hang er with seals,
— Chris mas tr e an Chris mas tr e con e tion
— actuat ed wing v lve or Chris mas tr e mast er v lve
NOTE The S SV is considered t o b a part of the primary b r ier envelope in some jurisdictions
9.5 Documenting of wel bar ier en velopes and wel bar rier elements
The Wel Ope at or shal be a le t o demons rat e the s atus of wel b r ie envelo es for each wel an
wel ty e
The Wel Ope at or should conside r cording the cur ent b r ie envelo es an their r spe tive
element It is sugg est ed that a wel b r ie schematic be used t o convey this information Any faied or
imp ir d wel bar ie element should beclearly marked an s at ed on the wel b r ie r cord
It shal be clear from the wel han o e documentation w hich comp nent in the wel ar wel b r ie
element and comprise w hich b r ie envelo e, the primary or the se on ary (w he e a plca le)
A sample of a wel b r ie schematic is pr sent ed in An ex D
10 Wel component per formanc e standard
10.1 General
A wel comp nent pe formanc s an ard contains the fu ctionalty an ac eptanc c it eria for each
of the b r ie safety c itical element A cc ptanc c it eria for wel int egrity desc ibe such it ems as
ac epta le leak rat es, timet o closur , fai -safe spe ification; et c
b r ie element Ad itionaly, the se tion pro ides ex mples an guidanc , inclu ing calculations, for
ve ification of the pe formanc s an ard as spe if ied b the Wel Ope at or
The Wel Ope at or shal define pe formanc s an ards for each wel ty e Pe formanc s an ards,
sup ort ed b the risk as es ment, ar the b sis for the develo ment of maint enanc an monit oring
r q ir ment
It ems t o conside w hen defining a pe formanc s an ard ar
— fu ctionalty;
Trang 29— a ai a i ty;
— r l a i ty;
— surviv bi ty;
— faiur me hanisms;
— faiur conseq enc s;
— o e ating con itions;
— int eractions with othe sy st ems
An ex mple of a pe formanc s an ard is t o be fou d in Annex E
Wel b r ie element , their functions an faiur modes ( e An ex F) can be used t o aid in develo ing
a pro riat e ac eptanc , monit oring an maint enanc c it eria; ex mples ar desc ibed in a wel int egrity
maint enanc an monit oring model given in Ta le 3
10.2 Ac c eptanc e c iteria and acc eptable le k tes
A leak is def ined as an u int en ed, an the efor u desir d, mo ement of fluids eithe t o, or from, a
containe or a fluid containing sy st em
Ex mples of wel faiur modes an leak p ths ar given in Annex G
Using a risk-based a pro ch, the Wel Ope at or should define their ac epta le leak rat es an t es ing
fr q ency for in ivid al b r ie element for al wel ty es within the ac eptanc c it eria desc ibed
below
The ac epta le leak rat e through in ivid al wel b r ie element can be dife en for ex mple, an
SCS V fla pe v lve ma be alowed t o ha e a highe leak rat e than a Chris mas tr e mast er v lve
These dife ing alowa le leak rat es ar catalo ued in a matrix, w hich is r fe r d t o as the “leak rat e
ac eptanc matrix” ( e Ta le 1) an w hich can be inclu ed asp rt of a pe formanc s an ard
A cc pta le leak rat es shal satis y at leas al the folowing ac eptanc c it eria:
— leak ac os a v lve, leak contained within the envelo e or flow p th: ISO 1 417 :2 04;
— leak ac os a b r ie envelo e, con uit t o con uit: not pe mitt ed u les the r c iving con uit is a le
t o withs an the p t ential new ly imp sed lo d an fluid composition;
— no leak rat e from con uit t o con uit ex ce ding the leak rat e spe if ied in ISO 1 417 :2 04, w hich
defines an ac epta le leak rat e as 24 l/h of lq id or 2 ,4 M3 h ( 90 scf/h) of g s; NOTE:for the
purp sesof this pro ision, APIRP 14 is eq iv lent t o ISO 1 417 :2 04
— no u planned or u controled leak of wel b r ef luent t o the surfac or subsurfac environment
Ingr s of welb r g s or welbor ef luent int o a control, chemical inje tion, lnes should be
risk-as es ed an mitig ting measur sput in plac as det ermined b the as es ment
Planned leaks can oc ur at dynamic seals such as p lshed rod s uffing b x es or p sitive ca ity pump
rotary s uff ing b x es Whe e this ty e of leakag e is ex e t ed t o oc ur, mitig ting measur s shal be in
plac t o ca tur an contain the efluent
NOTE T e inflow or le k t esting of in s itu g s lif valves is diff icult to me sure an compare t o the
ISO 1 417 :2 04 le k rate A des ription of how this can b rig rously performed t og ther with a sug ested
practical alt ernative is inclu ed in An e H
In the case of one or mor u ac epta le leak rat es, the Wel Ope at or shal risk as es the p t ential los
of containment an put mitig ting controls in plac as de med ne es ary b the as es ment Ope ating
out ide a def ined envelo e should be manag ed b a formal risk b sed deviation sy st em
Trang 30Table 1 Example of an ac eptable le k rate matrix
(not ex austive)
Ex mple: Ac eptable le k rate matrix ( not e haustive)
Inc r easing lowa le le k r ate
Opea tor huld perform a risk ba d an alysis
to detemine alowable lek ra te for va rios
ba r rie elements an for difr en t wel ty e
H ydra u lic m ter va lve (ESD)
L ower ma ste va lve
H yd ra ul i win g va lve (ESD)
Tu bin g plug in su spen ded wel
Bon n et, ϐla n ges a n d ϐi ttin gs
A-An n u lu s va lves(n orma lly open )
A-An n ul us va lves(n orma lly closed)
B-An n u lu s va lves
C-An n ul us va lves
In sta lled V plu gs
Tu bin g lea k ( u b h ydrosa ti c wel
Tu bin g lea k (l owi n g wel
Ga sl ifva lves (u b h ydr osa tic wel
Ga slfva lves (lowin g wel
Produ ction ca sin g lea k ( u b h ydr osa tic wel
Produ ction ca sin g lea k ( om 9-5 8" sho )
In termedia te ca sin g lea k
Produ ction a cker
Ac epta ble lea k rate m rix for :
Oper a tor: X Z:
Fi el d: AB
WelT pe: Produ cin g w ell s
Oth er : Closed in th p do s n ot ec ed 2,50 psi
Trang 3110.3 Measuring the le k rate
Dir ct measur ment of a leak rat e is oft en impractical The efor , calculations can be made t o translat e
the ac epta le g s (or l q id) leak int o a closed void of k own v lume int o an alowa le pr s ur bui d-up
This is an ac epta lea pro ch pro ided the method of calculation is document ed an f it the purpose
An ex mple of the leak rat e calculation, with compr s ibi ity, for lq id or g s is given in An ex I
10.4 Efects of temperatur e
It is ne es ary, espe ial y in subsea situations, t o take the efe t of t empe atur int o ac ount in these
calculations, sinc the welb r , flow lnes, manifolds, rise s, et c co l down q ickly w hen r mot ely
actuat ed v lves ar closed
Sometimes these t empe atur efe t can mask any int erpr tation of leak flow rat e
In these cases, es a lshing the leak rat e might not be p s ible, an it can bene es ary for v alve t es ing
t o r ly on in ir ct in ications such as the t empe atur it elf or int erpr tation of control lne r sp nse
charact eris ics
10.5 Dir ection of flow
As a g ene al rule, a component should be t est ed in the dir ction of flow If this is imp s ible or impractical,
a t es of the component in the count er-flow dir ction should be pe formed, w he ep s ible The t es can
be of lmit ed v lue in es a l shing the comp nent’ s a i ty t o seal in the dir ction of flow Any comp nent
t est ed in the cou t er flow dir ction should have this document ed
10.6 Integ rity of bar rier to c onduct wel maintenanc e and pair
In the case of an in-lne v lve that r q ir s maint enanc or r p ir, the e can be pr s ur sour es both
ups r am an downs r am t o conside w hen isolating the v lve in pr p ration for br aking containment
A double block-an -ble d or two b r ie principle should be a pled for ups r am or downs r am
isolation
10.7 ESD/related safety systems
Pe formanc r q ir ment for eme g ency sh t down sy st em ar in ac ordanc t o ISO 1 41 or US
r fe enc APIRP 14C
In ad ition t o the r q ir ment of API RP 14H, the Wel Ope at or should def ine the cause an efe t
matrix for the eme g ency sh tdown sy st em; se Ta le 2
Sh t down sy st ems shal be r lat ed t o the o e al wel ho k-up an the conseq enc of faiur , i.e the
prod ction pipel ne rating or the flar knock out ves el ca acity, an shal det ermine the closur time
an fu ction of any ESD sy st em
This imples that ele tric subme sible pumps, beam pumps, pro r s ive ca ity pumps an g s lf
syst ems, w hen ca a le of ex ce ding flow l ne pr s ur w hen closed-in, should ha e a sh t down sy st em
that r spon s adeq at ely t o pr vent los of containment an shal be maintained ac ordingly
Table 2 Example of a cause an efects matrix
Trang 32Example of a Cause an d efec ts Matr ix
Sracesafetyvlvϐlow win
Uprmaser gtevlv
Sse TIV (teIsolatio vlv)
Ssurace safetyvlv
Gaslf shtdwnvlv
SteminjecioStdwvlv
Bmpmp / Eshtdwn
Gasblaetinshtdwnvlv
Closu re seq en ce
e a m ples
Exa m ple closu r e tim es 30 s 30 s 6 s
10.8 Wel c omponent operating pr oc edur e
The Wel Ope at or shal es a l sh the efe tive s art up an sh t down seq encing of the ESD’ s, SCS SV’ s,
S V chokes an ad itional man al v lvesas part the wel o e ating proc d r
E AMP E A ty icalopen u seq ence is as folows
a)Wel master valve an SCS SV is opened
b) Up er master ESD is opened
c)Man al flowing valve with S V is opened
d) Wel can b brought on line u using the flow wing valve choke in ac ordance with the ma imum drawdown
def ined for the wel operating envelop
11 Wel operating and c omponent l mits
11.1 Wel operating l mits
11.1.1 T e Wel Operator shal identify the o erating p ramete s for each wel an clear ly spe ify the
o erating lmit for each p ramete The wel should not be o er ated out ide of the o erating lmits
The wel o e ating l mit should be b sed on the spe ifications of the comp nent that make up the wel
with their design fact orsan pe formanc s an ards a pled
Any chang es in wel configuration, con ition, l fe cycle phase or s atus r q ir s the wel o e ating l mit
t o be che ked an p t entialy updat ed
The Wel Ope at or shal clearly def ine
— r sp nsibi ties for es a l shing, maintaining, r viewing an a pro ing the wel o e ating l mit ;
— how each of the wel o e ating lmit p ramet ers should be monit or d an r corded d ring pe iods
w hen the wel is o e ational, sh t-in or suspen ed;
— l fe-cycle of the wel;
— r q ir ment for any thr shold set ings for the wel o e ating l mit ;
— actions that should be taken in the event a wel o e ating p ramet er is a pro ching it defined
thr shold;
— actions, notif ications an inves ig tions r q ir d if wel o e ating lmit thr sholdsar ex ce ded;
Trang 33The wel o e ating l mit shal be pr sent ed in a format hat is r adi y a ai a le an u ambiguous for al
pe sonnel inv lved in o e ating the wel
11.1.2 T e wel o erating lmit p ramete scan chang e o e thelfe of the wel an can inclu e, but ar e
not lmited to,
— wel head/tubing head prod ction an inje tion pr s ur ;
— prod ction/inje tion flow rat es;
— an ulus pr s ur s (MAASP) ( e 1 7);
— an ulus pr s ur s, ble d-ofs an t op-ups;
— prod ction/inje tion fluid cor osive comp sition (e.g H2S, CO
2, et c l mitations);
— prod ction/inje tion fluid e osion (e.g san cont ent an velocity lmit );
— wat er cut an BS&W;
— o e ating t empe atur ;
— r se v ir draw-down;
— artificial l f o e ating paramet ers;
— control lne pr s ur an fluid;
— chemical inje tion pr s ur an fluid;
— actuat or pr s ur s an o e ating fluids;
— wel ki l lmitations (e.g l mit on pumppr s ur s an flow rat es);
— wel head mo ement e.g wel head growth d e t o the mal ex ansion an wel head subsidenc );
— cyclc lo d lmitations leading t o fatigue l fe l mit , e.g rise s, cond ct or casing, the mal wels;
— alowa le ble d-of fr q ency an t otal volume, pe an ulus;
— naturaly oc ur ing radio ctive mat erial (NORM) prod ction;
— cor osion rat es;
— tubing an casing wal thicknes ;
— cathodic prot ection syst em
11.1.3 T e Wel Operator ma y also conside ca turing any welhead an Christmas tr ee lo d lmitations
in the wel o erating lmit , such as lmit on ax ial, ben ing , lateral an torsional wel lo ding lmit , as
ma y be a pled d ring wel inte ventions
An ex mple of a wel o e ating lmit form can be foun in An ex J
11.2 el load and tubular stres anal ysis
11.2.1 T e Wel Oper ator should identify c itical casing an tubing lo d cases that ma y be a pled d ring
the o erating lfe cycle of the wel Such lo d cases should inclu e, but not be lmited to,
— prod ction;
— Inje tion;
Trang 34— wel ki l;
— wel int ervention;
— wel s imulation
11.2.2 During the wel lfe cycle, it can be ne es ary to r e-ev luate the lo d cases an the wel o erating
lmits Such a r e-ev luation ma y be trig g er ed b the folowing event :
— wel anomaly;
— wel int egrity is ues;
— chang e in wel function;
— chang e in wel se vic (wel s atus);
— develo ment in t echnolo y r lating t o calculation t ech iq es or proc s es;
— wel r view;
— ext ension of the end of wel l fe
11.3 Fur ther wel -use review
The Wel Ope at or shal es a l sh a r view proc s an it fr q ency t o r view the wel s atus, i.e
o e ating, closed in, suspen ed, an es a lshes it furthe use
The Wel Ope at or shal es a lsh a plan that identif ies r st oration t o prod ction, inje tion, suspension
or a an onment of the identified wels, w hich is in ac ordanc with the WIMS t o mitig t e the risk of los
of containment
11.4 End-of- ife review
The Wel Ope at or shal define theen of wel l fe an es a l sh a formal end-of-wel-lfe r view proc s
The en of wel lfe trigg ers the r view that as es es the wel s atus for safe contin ation If the wel
as es ment demons rat es that the wel is unsafe for contin ed use, the Wel Ope at or shal plan eithe
t o r ctify the wel con ition or plan for suspension or a an onment The pe iod b w hich a wel’ s lfe can
be ext ended isdet ermined on a case-b -case b sis
11.5 Manag ement of chang e to the operating l mits
Any planned deviation from the a pro ed o e ating l mit should be subje t t o a manag ement-of-chang e
o e ating l mit hould be the subje t of inves ig tion an ad r s ed in the R ep rting ( e Cla use 1 ) an
Audit ( e Clause 2 ) proc d r s
12 Wel monitoring and surv i lanc e
12.1 General
The Wel Ope at or shal def ine the monit oring an survei anc r q ir ment t o ensur that wels ar
o e at ed within their envelo e The Wel Ope at or shal det ermine the fr q ency of monit oring an
survei lanc , b sed on the risk an conseq enc of br aching the bar ie envelo es an the a i ity t o
r sp n
Monit oring is the o se v tion of the o e ating p ramet ers of a wel, via ins rumentation, on pr def ined
fr q ency t o ensur that they r main within it o e ating lmit , e.g pr s ur s, t empe atur s, flow
rat es
Trang 35Survei lanc is the r cording of phy sical charact eris ics of the wel, e.g tubing wal thick es
measur ment , visual inspe tions, samplng
The monit oring an survei lanc p ramet ers ar detai ed in Clause 1 wel o e ating l mit
12.2 Monitor ing and survei lanc e frequency
The Wel Ope at or shal def ine an document the sched le, fr q ency an ty e of monit oring an
survei anc r q ir d
A risk-b sed a pro ch can be used t o define the monit oring an survei lanc fr q encies ( e Figur 3)
The fr q ency ma be adjust ed eithe if it is fou d that the monit oring an survei lanc activities
ar r sulting in a higher- or lower-than-for cast ed n mbe of non-conformanc s or b sed on risk
conside ations such as r l a i ty or mean-time-t o-faiur analy sis The wel monit oring an survei lanc
pro ram should conside , at a minimum, the folowing main element :
— wel s atus: inje ting, prod cing, sh t-in, suspen ed, a an oned;
— o e ating l mit ;
— cor osion;
— e osion;
— s ructural wel sup ort int egrity;
— wel head elev ation;
— r se v ir subsidenc
12.3 Shut- n wel s
A sh t-in wel is a wel with one or mor v lve()closed in thedir ction of flow
A wel with a b ck-pr s ur v lve or tubing -hang er plug ins al ed is conside ed t o be a sh t-in wel, not
a suspen ed wel
A sh t-in wel shal be monit or d ac ording t o a risk-b sed sched le defined b the Wel Ope at or,
with d e conside ation of the risk prof ile brought a out b the chang e in flow an non-flow wett ed
comp nent ( e 3.1 )
The s atus an monit oring r q ir ment of a sh t-in wel ar not det ermined b w hethe or not it is
ho ked-up t o prod ction an ESD faci ities
12.4 Suspended wel s
A suspen ed wel is one that has be n isolat ed from the prod cing r se v ir via a de p-set down-hole
isolation devic (me hanical or c ment plug); comp nent a o e the isolation devic ar no long er
conside ed flow wett ed
NOTE A S SV is not considered a down-hole isolation device in this case
A suspen ed wel shal be monit or d ac ording t o a risk based sched le def ined b the Wel Ope at or
with d e conside ation of the risk prof ile brought a out b the chang e in flow- an non-flow-wett ed
comp nent ( e 3.1 )
The s atus an monit oring r q ir ment of a suspen ed wel ar not det ermined b w hethe or not it is
conne t ed t o prod ction an ESD faci ities
Trang 36A wel shal not r main a suspended wel indef init ely The Wel Ope at or should es a l sh a pe iodic
r view proc s for suspen ed wel s that document and detai s the int ended plan for the wel, w hich
ma inclu e it pe manent a an onment
12.5 Visual inspection
V isual inspe tion is un e taken t o as es theg ene al con ition of the surfac or mu -lne eq ipment, as
wel as as ociat ed prot ection arou d the wel
The it emsinclu ed in a visual inspe tion ar , but not l mit ed t o,
— phy sical damag e t o wel eq ipment, b r ie s, c ash frames or traw l defle t ors;
— al con e tions t o the wel ar se ur and intact, e.g ins rumentation an control lnes;
— wel c l ars ar clean an fr e of debris or fluid, inclu ing surfac wat er, buid-up;
— g ene al con ition of the wel head an Chris mas tr e: me hanical damag e, cor osion, e osion,
wear;
— o se v tion of leaks or bub les emanating from the Chris mas tr e or wel head, espe ialy from
an ul an othe ca ities that ar not t est ed or monit or d b othe means
If any leaks or bub les ar o se ved, an es imat e of the flow rat e should be made an a plan for
containment an r p ir implement ed
12.6 Wel log g ing
12.6.1 Wel log g ing te h iq es ar e ofen the only means of ev luating thecon ition of some wel b r ie
element such as c ment , casing , tubing , etc These log g ing and survei anc te h iques ma y be p rt of a
pr e-plan ed survei anc pr og ramme, or ma y be initiated in resp nse to an event or an o se ved anomaly
Wel lo ging ma be a pro ched in dife ent way s:
— in ivid al wel b sis, i.e as es ing the con ition of the wel;
— clust er or f ield-wide b sis, w he eb sample wels ar as es ed an the r sult cascaded ac os the
clust er/f ield
12.6.2 Wel log g ing ma y include the folow ing typesof measur ement:
— cor osion cal pe ;
— acous ic;
— sonic an ultra-sonic;
— ma netic ed y cur ent ;
— ma netic flux leakag e;
— t empe atur ;
— pr s ur ;
— prod ction lo ging: flow an phase;
— dis ribut ed t empe atur an sonic;
— wat er-flow lo ging;
— video an came a;
Trang 37— trac r survey.
12.7 Corrosion monitoring
12.7.1 C rrosion of s ructural or pr es ure-containing comp nent of the wel can lead to a los of wel
integ rity
A wel isg ene aly ex osed t o two dis inct cor osion proc s es:
— int ernal cor osion that originat es from r se v ir ef luent or imp sed efluent , inje tion efluent ,
dri lng mu , or completion brines;
— ext ernal cor osion that originat es from air contact with wat er, such as
— surfac wat er,
— s atic subsurfac wat er or aq ife s
Both int ernal an ext ernal cor osion lead t o s ructural int egrity pro lems an a p t ential los of
containment if not mitig t ed in a timely fashion The Wel Ope at or should define the monit oring
pro ram an fr q ency b sed on the as es ment of the cor osion risk t o the s ructural an wel b r ie
element , w hich ma be adjust ed depen ing on the r sult of inspe tions pe formed
12.7.2 C rrosion manag ement prog ramsma y inclu e
— sele tion of mat erials r sis ant t o cor osion;
— es imat es for cor osion rat es for bar ie element o e the design l fe of the wel; such es imat ed
cor osion rat es should be based on document ed field ex e ienc , or modeled using r co niz d
in us ry practic ;
— in ir ct measur ment , such as sampl ng an ulus or wel fluid for cor osive chemicals (e.g H2S,
acid) an b -prod ct of cor osive r actions;
— monit or chemical inje tion int o the fluid flow p th;
— monit oring of chemical inhibition of an ulus fluids;
— isolation of ann l from o yg en sour es;
— cathodic prot ection
— pe iodic ex mination of prot ective co tings (e.g w he e ac es ible, t o con uct ors, wel head,
Chris mas tr es, et c ) an s ructural membe s, such as con uct ors an surfac casing
12.8 Cathodic pr otection monitor ing
When wels ar at risk d e t o cor osion from ext ernal environmental influenc s, such as sea wat er,
aq ife s or swamps, it is ne es ary for the Wel Ope at or t o as es the risk an def ine the means of
prot ection a ains fai ur One such sy st em that can be a pled t o prot ect b r st eel comp nent , such
as casing an con uct ors, is a cathodic prot ection sy st em
It is ne es ary for the Wel Ope at or t o ha e an as uranc sy st em in plac t o ve ify that the cathodic
prot ection syst ems (w he e a plca le) ar o e ating as pe the design int ent
Furthe information on these sy st ems can be o tained from NACE SPO1 9- 20 7 an NACE AS 2 2
.4-1 94
Trang 3812.9 Erosion monitor ing
The e osion of comp nent in the flow p th within the welb r , wel head an Chris mas tr e can lead
t o los of wel int egrity
Particular att ention should be given t o se tions in the flow path w he e velocity an turbulenc can
inc ease, such as can oc ur at chang es in c os -se tional ar a in the completion s ring, and in ca ities
within the Chris mas tr e as embly
Flow an velocity lmit should be b sed on the es a l shed wel b r fluid composition and solds
cont ent an should be set in ac ordanc with ISO 1 7 3, NORSOK P-00 , DNV RP 0 0 or API RP 14
Whe e the e is any signif icant chang e in wel b r fluid comp sition or sold cont ent, the e osion risk
an velocity l mit should ber as es ed
F or wel s that ar o e ating close t o the velocity lmit , an e osion-monit oring pro ram should be
es a lshed, an form part of the wel inspe tion an maint enanc pro ram
Flow an velocity lmit should be s at ed in the wel o e ating l mit ( e Cla use 1 )
F or each b r ie element, the Wel Ope at or should es a lsh an document ac epta le lmit of e osion
Such lmit should be b sed on the pr se v tion of wel int egrity for the defined wel lfe cycle lo d cases
12.10 Structural integ r ity monitoring
The con uct or, surfac casing (an sup orting formations) an wel head as embly ty icaly pro ide
s ructural sup ort for the wel Faiur of these s ructural component can compromise wel int egrity
an escalat e t o a los of containment
Pot ential faiur modes for s ructural comp nent can inclu e, but ar not lmit ed t o:
— metal cor osion;
— metal fatigue d e t o cyclc lo ds;
— degradation of soi s r ngth d e t o cycl c, cl matic an / r the mal lo ds;
— sideway s lo ding d e t o sq e zing formations or earth uake
Subsea and ofshor s ructural comp nent can be subje t t o ad itional lo ds arising from t emporary
eq ipment at ached t o the wel , such as dri ing or int ervention rise s
F or each wel , the Wel Ope at or should as es the risk of faiur of such s ructural component The
as es ment of the risk should be inclu ed in a fai ur modes an efe t analy sis (FMEA)
The Wel Ope at or should es a lsh suita le sy st ems t o model or measur degradation in the s ructural
membe s of the wel In some ins anc s, it is not p s ible t o dir ctly measur the afe t of cumulative
fatigue an , the efor , a tracking and r cording sy st em is r q ir d t o as es the pr dict ed consumed
l fe of the comp nent ( e ISO 1 6 8-1 for furthe information)
12.1 1 Wel elevation mo itor ing
Unex e t ed chang es in wel elev ations can be an in ication of the degradation of s ructural sup ort of
the wel an can escalat e t o imp cting on a wel ’s int egrity
Elev tion monit oring and r cording should form p rt of the wel inspe tion pro ram ( e 1 5) The t op
of the con uct or an the welhead, r lative t o an es a lshed datum should be r corded Data should
also inclu e the wel head t empe atur at the time the elev tion measur ment was taken Depen ing on
the wel con guration, it can be normal for thewel t o “grow” w hen transitioning from a cold sh t-in t o
a hot prod ction con ition
Trang 39When monit oring for subsidenc or elev tion of the wel an it sur ou dings, the datum r fe enc
should bepe iodicaly verif ied an r corded
Top b ttom ϐlang e to
Main g rou d levelA
Top con uctor to main
g rou d levelB
Top con uctor to
Figure 5 Example of subsidence me surement
12.1 2 Reser voir subsidenc e
In some matur fields, depletion of r se v ir pr s ur , or a r se v ir pr s ur inc ease, has led t o
comp ction or elev tion of the r se v ir rock an / or subsidenc of the o e burden formation( )
R esultant chang es in the t ect onic s r s r gime can also activ t e fault This has the p t ential t o imp se
signif icant lo ds on casing s rings, leading t o casing faiur Also, the subsidenc can u de mine a
platorm or wel p d
The Wel Ope at or should make an as es ment of the pot ential for comp ction an subsidenc Whe e it
is as es ed t o be a risk, suita le monit oring pro rams should be es a l shed
Such pro rams ma inclu e
— surfac measur ment ;
— down-hole welb r measur ment ;
— down-hole me hanical faiur s;
— los / r d ction of prod ction;
— seismic survey s u ies
Trang 4013 A nnular pr es ur e manag ement
13.1 General
The e ar thr e ty es of an ular pr s ur that can oc ur d ring the wel’ s lfe cycle g ene aly r fe r d
t o as folow s:
— The Wel Ope at or-imp sed ann lus pr s ur ispr s ur that is delbe at ely a pled t o an an ulus as
part of the wel o e ating r q ir ment Ty icaly, this can beg s l f g s in the A-an ulus or a pled
pr s ur in A ann lus in orde t o prot ect a ains col a se risk from tra ped an ular pr s ur in B
an ulus on subsea wel s
— The maly in uc d an ulus pr s ur is pr s ur in a tra ped an ulus v lume that is ca used b
the mal chang es oc ur ing within the wel
— Sus ained ann lus pr s ur ( SAP) is a pr s ur w hich oc urs in an an ulus that r buids aft er
ha ing be n bled-of an cannot be at ribut ed t o the Wel Ope at or imp sed or the maly in uc d
pr s ur SAP is of particular conc rn as it can be in icative of a faiur ofone or mor b r ie
element , w hich ena les commu ication between a pr s ur sour e within thewel an an ann lus
This, b def inition, means that the e is a los of int egrity in the wel that can ultimat ely lead t o an
uncontroled r lease of fluids, w hich in turn can lead t o u ac epta le safety an environmental
conseq enc s
13.2 Manag ement
The Wel Ope at or shal manag e the ann l pr s ur s such that wel int egrity is maintained throughout
the complet e wel l fe cycle
A t a minimum, it is ne es ary t o conside the folowing w hen mana ing an ulus pr s ur b sed up n a
risk as es ment :
— pr s ur sour es;
— monit oring, inclu ing tr n s;
— an ulus cont ent , fluid ty e an volume;
— o e ating l mit , inclu ing pr s ur l mit , alowa le rat es of pr s ur chang e;
— faiur modes;
— pr s ur safety an r lef sy st ems
13.3 S urc es of annular pres ur e
13.3.1 T e sour ce of an ulus pr es ur e can be d e to several factors:
— t empe atur chang es that oc ur within the wel that c eat e the mal y in uc d pr s ur (e.g wel
s art-up an sh t-in, d e t o neighb uring wels, inc eased wat er prod ction, et c );
— del be at e actions taken b the Wel Ope at or t o inc ease the pr s ur within an an ulus;
— commu ication with a pr s ur sour e, for ex mple
— r se v ir,
— l f g s,
— wat er inje tion,