Electrical engineering know it all
Trang 3PIC Microcontrollers: Know It All
Lucio Di Jasio, Tim Wilmshurst, Dogan Ibrahim, John Morton, Martin Bates, Jack Smith, D.W Smith, and Chuck Hellebuyck
ISBN: 978-0-7506-8615-0
Embedded Software: Know It All
Jean Labrosse, Jack Ganssle, Tammy Noergaard, Robert Oshana, Colin Walls, Keith Curtis, Jason Andrews, David J Katz, Rick Gentile, Kamal Hyder, and Bob Perrin
ISBN: 978-0-7506-8583-2
Embedded Hardware: Know It All
Jack Ganssle, Tammy Noergaard, Fred Eady, Lewin Edwards, David J Katz, Rick Gentile, Ken Arnold, Kamal Hyder, and Bob Perrin
ISBN: 978-0-7506-8584-9
Wireless Networking: Know It All
Praphul Chandra, Daniel M Dobkin, Alan Bensky, Ron Olexa, David Lide, and Farid Dowla
ISBN: 978-0-7506-8582-5
RF & Wireless Technologies: Know It All
Bruce Fette, Roberto Aiello, Praphul Chandra, Daniel Dobkin, Alan Bensky, Douglas Miron, David Lide, Farid Dowla, and Ron Olexa
ISBN: 978-0-7506-8581-8
Electrical Engineering: Know It All
Clive Maxfi eld, Alan Bensky, John Bird, W Bolton, Izzat Darwazeh, Walt Kester, M.A Laughton, Andrew Leven, Luis Moura, Ron Schmitt, Keith Sueker, Mike Tooley, DF Warne, Tim Williams
ISBN: 978-1-85617-528-9
Audio Engineering: Know It All
Douglas Self, Richard Brice, Don Davis, Ben Duncan, John Linsely Hood, Morgan Jones, Eugene Patronis, Ian Sinclair, Andrew Singmin, John Watkinson
ISBN: 978-1-85617-526-5
Circuit Design: Know It All
Darren Ashby, Bonnie Baker, Stuart Ball, John Crowe, Barrie Hayes-Gill, Ian Grout, Ian Hickman, Walt Kester, Ron Mancini, Robert A Pease, Mike Tooley, Tim Williams, Peter Wilson, Bob Zeidman
ISBN: 978-1-85617-527-2
Test and Measurement: Know It All
Jon Wilson, Stuart Ball, GMS de Silva, Tony Fischer-Cripps, Dogan Ibrahim, Kevin James, Walt Kester,
M A Laughton, Chris Nadovich, Alex Porter, Edward Ramsden, Stephen Scheiber, Mike Tooley, D F Warne, Tim Williams
ISBN: 978-1-85617-530-2
Mobile Wireless Security: Know It All
Praphul Chandra, Alan Bensky, Tony Bradley, Chris Hurley, Steve Rackley, John Rittinghouse, James Ransome, Timothy Stapko, George Stefanek, Frank Thornton, Chris Lanthem, John Wilson
ISBN: 978-1-85617-529-6
For more information on these and other Newnes titles visit: www.newnespress.com
Trang 4Clive Maxfi eld John Bird
M A.Laughton
W Bolton Andrew Leven Ron Schmitt Keith Sueker Tim Williams Mike Tooley Luis Moura Izzat Darwazeh Walt Kester Alan Bensky
DF Warne
AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
Trang 5Linacre House, Jordan Hill, Oxford OX2 8DP, UK
Copyright © 2008, Elsevier Inc All rights reserved
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher
Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: ( 44) 1865 843830, fax: ( 44) 1865 853333,
E-mail: permissions@elsevier.com You may also complete your request online
via the Elsevier homepage ( http://elsevier.com ), by selecting “ Support & Contact ”
then “ Copyright and Permission ” and then “ Obtaining Permissions ”
Library of Congress Cataloging-in-Publication Data
Application submitted
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library
ISBN: 978-1-85617-528-9
Typeset by Charon Tec Ltd., A Macmillan Company (www.macmillansolutions.com) Printed in the United States of America
08 09 10 10 9 8 7 6 5 4 3 2 1
For information on all Newnes publications
visit our Web site at www.elsevierdirect.com
Trang 6About the Authors xv
Chapter 1: An Introduction to Electric Circuits 1
1.1 SI Units 1
1.2 Charge 2
1.3 Force 2
1.4 Work 3
1.5 Power 4
1.6 Electrical Potential and e.m.f .5
1.7 Resistance and Conductance 5
1.8 Electrical Power and Energy 6
1.9 Summary of Terms, Units and Their Symbols 7
1.10 Standard Symbols for Electrical Components 8
1.11 Electric Current and Quantity of Electricity 8
1.12 Potential Difference and Resistance 10
1.13 Basic Electrical Measuring Instruments 11
1.14 Linear and Nonlinear Devices 11
1.15 Ohm’s Law 12
1.16 Multiples and Submultiples 13
1.17 Conductors and Insulators 16
1.18 Electrical Power and Energy 16
1.19 Main Effects of Electric Current 20
Chapter 2: Resistance and Resistivity 21
2.1 Resistance and Resistivity 21
2.2 Temperature Coeffi cient of Resistance 25
Chapter 3: Series and Parallel Networks 31
3.1 Series Circuits 31
3.2 Potential Divider 34
Trang 73.3 Parallel Networks 37
3.4 Current Division 43
3.5 Relative and Absolute Voltages 48
Chapter 4: Capacitors and Inductors 53
4.1 Introduction to Capacitors 53
4.2 Electrostatic Field 53
4.3 Electric Field Strength 55
4.4 Capacitance 56
4.5 Capacitors 56
4.6 Electric Flux Density 58
4.7 Permittivity 59
4.8 The Parallel Plate Capacitor 61
4.9 Capacitors Connected in Parallel and Series 64
4.10 Dielectric Strength 70
4.11 Energy Stored 71
4.12 Practical Types of Capacitors 72
4.13 Inductance 76
4.14 Inductors 78
4.15 Energy Stored 80
Chapter 5: DC Circuit Theory 81
5.1 Introduction 81
5.2 Kirchhoff’s Laws 81
5.3 The Superposition Theorem 89
5.4 General DC Circuit Theory 95
5.5 Thévenin’s Theorem 99
5.6 Constant-Current Source 106
5.7 Norton’s Theorem 107
5.8 Thévenin and Norton Equivalent Networks 111
5.9 Maximum Power Transfer Theorem 117
Chapter 6: Alternating Voltages and Currents 123
6.1 The AC Generator 123
6.2 Waveforms 124
Trang 86.3 AC Values 126
6.4 The Equation of a Sinusoidal Waveform 133
6.5 Combination of Waveforms 139
6.6 Rectifi cation 146
Chapter 7: Complex Numbers 149
7.1 Introduction 149
7.2 Operations involving Cartesian Complex Numbers 152
7.3 Complex Equations 155
7.4 The polar Form of a Complex Number 157
7.5 Applying Complex Numbers to Series AC Circuits 158
7.6 Applying Complex Numbers to Parallel AC Circuits 171
Chapter 8: Transients and Laplace Transforms 185
8.1 Introduction 185
8.2 Response of R-C Series Circuit to a Step Input 185
8.3 Response of R-L Series Circuit to a Step Input 192
8.4 L-R-C Series Circuit Response 199
8.5 Introduction to Laplace Transforms 205
8.6 Inverse Laplace Transforms and the Solution of Differential Equations 215
Chapter 9: Frequency Domain Circuit Analysis 229
9.1 Introduction 229
9.2 Sinusoidal AC Electrical Analysis 229
9.3 Generalized Frequency Domain Analysis 257
References 315
Chapter 10: Digital Electronics 317
10.1 Semiconductors 317
10.2 Semiconductor Diodes 318
10.3 Bipolar Junction Transistors 319
10.4 Metal-oxide Semiconductor Field-effect Transistors 321
10.5 The transistor as a Switch 322
10.6 Gallium Arsenide Semiconductors 324
10.7 Light-emitting Diodes 324
10.8 BUF and NOT Functions 327
Trang 910.9 AND, OR, and XOR Functions 329
10.10 NAND, NOR, and XNOR Functions 329
10.11 Not a Lot 331
10.12 Functions Versus Gates 332
10.13 NOT and BUF Gates 333
10.14 NAND and AND Gates 335
10.15 NOR and OR Gates 336
10.16 XNOR and XOR Gates 337
10.17 Pass-Transistor Logic 339
10.18 Combining a Single Variable With Logic 0 or Logic 1 342
10.19 The Idempotent Rules 342
10.20 The Complementary Rules 343
10.21 The Involution Rules 344
10.22 The Commutative Rules 344
10.23 The Associative Rules 344
10.24 Precedence of Operators 345
10.25 The First Distributive Rule 346
10.26 The Second Distributive Rule 346
10.27 The Simplifi cation Rules 348
10.28 DeMorgan Transformations 349
10.29 Minterms and Maxterms 351
10.30 Sum-of-Products and Product-of-sums 351
10.31 Canonical Forms 352
10.32 Karnaugh Maps 353
10.33 Minimization Using Karnaugh Maps 354
10.34 Grouping Minterms 355
10.35 Incompletely Specifi ed Functions 356
10.36 Populating Maps Using 0s versus 1s 359
10.37 Scalar Versus Vector Notation 360
10.38 Equality Comparators 361
10.39 Multiplexers 363
10.40 Decoders 364
10.41 Tri-State Functions 365
10.42 Combinational Versus Sequential Functions 367
10.43 RS Latches 367
Trang 1010.44 D-Type Latches 373
10.45 D-Type Flip-Flops 374
10.46 JK and T Flip-Flops 377
10.47 Shift Registers 378
10.48 Counters 381
10.49 Setup and Hold Times 383
10.50 Brick by Brick 384
10.51 State Diagrams 386
10.52 State Tables 387
10.53 State Machines 388
10.54 State Assignment 389
10.55 Don’t Care States, Unused States, and Latch-Up Conditions 392
Chapter 11: Analog Electronics 395
11.1 Operational Amplifi ers Defi ned 395
11.2 Symbols and Connections 395
11.3 Operational Amplifi er Parameters 397
11.4 Operational Amplifi er Characteristics 402
11.5 Operational Amplifi er Applications 403
11.6 Gain and Bandwidth 405
11.7 Inverting Amplifi er With Feedback 406
11.8 Operational Amplifi er Confi gurations 408
11.9 Operational Amplifi er Circuits 412
11.10 The Ideal Op-Amp 418
11.11 The Practical Op-Amp 420
11.12 Comparators 450
11.13 Voltage References 459
Chapter 12: Circuit Simulation 465
12.1 Types of Analysis 466
12.2 Netlists and Component Models 476
12.3 Logic Simulation 479
Chapter 13: Interfacing 481
13.1 Mixing Analog and Digital 481
13.2 Generating Digital Levels From Analog Inputs 484
Trang 1113.3 Classic Data Interface Standards 487
13.4 High Performance Data Interface Standards 493
Chapter 14: Microcontrollers and Microprocessors 499
14.1 Microprocessor Systems 499
14.2 Single-Chip Microcomputers 499
14.3 Microcontrollers 500
14.4 PIC Microcontrollers 500
14.5 Programmed Logic Devices 500
14.6 Programmable Logic Controllers 501
14.7 Microprocessor Systems 501
14.8 Data Representation 503
14.9 Data Types 505
14.10 Data Storage 505
14.11 The Microprocessor 506
14.12 Microprocessor Operation 512
14.13 A Microcontroller System 518
14.14 Symbols Introduced in this Chapter 523
Chapter 15: Power Electronics 525
15.1 Switchgear 525
15.2 Surge Suppression 528
15.3 Conductors 530
15.4 Capacitors 533
15.5 Resistors 536
15.6 Fuses 538
15.7 Supply Voltages 539
15.8 Enclosures 539
15.9 Hipot, Corona, and BIL 540
15.10 Spacings 541
15.11 Metal Oxide Varistors 542
15.12 Protective Relays 543
15.13 Symmetrical Components 544
15.14 Per Unit Constants 546
15.15 Circuit Simulation 547
Trang 1215.16 Simulation Software 551
15.17 Feedback Control Systems 552
15.18 Power Supplies 559
Chapter 16: Signals and Signal Processing 609
16.1 Origins of Real-World Signals and their Units of Measurement 609
16.2 Reasons for Processing Real-World Signals 610
16.3 Generation of Real-World Signals 612
16.4 Methods and Technologies Available for Processing Real-World Signals 612
16.5 Analog Versus Digital Signal Processing 613
16.6 A Practical Example 614
References 617
Chapter 17: Filter Design 619
17.1 Introduction 619
17.2 Passive Filters 621
17.3 Active Filters 622
17.4 First-Order Filters 628
17.5 Design of First-Order Filters 630
17.6 Second-Order Filters 632
17.7 Using the Transfer Function 636
17.8 Using Normalized Tables 641
17.9 Using Identical Components 641
17.10 Second-Order High-Pass Filters 642
17.11 Bandpass Filters 650
17.12 Switched Capacitor Filter 654
17.13 Monolithic Switched Capacitor Filter 657
17.14 The Notch Filter 659
17.15 Choosing Components for Filters 663
17.16 Testing Filter Response 665
17.17 Fast Fourier Transforms 666
17.18 Digital Filters 694
References 732
Chapter 18: Control and Instrumentation Systems 735
18.1 Introduction 735
Trang 1318.2 Systems 737
18.3 Control Systems Models 741
18.4 Measurement Elements 747
18.5 Signal Processing 761
18.6 Correction Elements 769
18.7 Control Systems 780
18.8 System Models 791
18.9 Gain 793
18.10 Dynamic Systems 797
18.11 Differential Equations 812
18.12 Transfer Function 816
18.13 System Transfer Functions 822
18.14 Sensitivity 826
18.15 Block Manipulation 830
18.16 Multiple Inputs 835
Chapter 19: Communications Systems 837
19.1 Introduction 837
19.2 Analog Modulation Techniques 839
19.3 The Balanced Modulator/Demodulator 848
19.4 Frequency Modulation and Demodulation 850
19.5 FM Modulators 860
19.6 FM Demodulators 862
19.7 Digital Modulation Techniques 865
19.8 Information Theory 873
19.9 Applications and Technologies 899
References 951
Chapter 20: Principles of Electromagnetics 953
20.1 The Need for Electromagnetics 953
20.2 The Electromagnetic Spectrum 955
20.3 Electrical Length 960
20.4 The Finite Speed of Light 960
20.5 Electronics 961
20.6 Analog and Digital Signals 964
20.7 RF Techniques 964
Trang 1420.8 Microwave Techniques 967
20.9 Infrared and the Electronic Speed Limit 968
20.10 Visible Light and Beyond 969
20.11 Lasers and Photonics 971
20.12 Summary of General Principles 972
20.13 The Electric Force Field 973
20.14 Other Types of Fields 975
20.15 Voltage and Potential Energy 976
20.16 Charges in Metals 978
20.17 The Defi nition of Resistance 980
20.18 Electrons and Holes 980
20.19 Electrostatic Induction and Capacitance 982
20.20 Insulators (dielectrics) 986
20.21 Static Electricity and Lightning 988
20.22 The Battery Revisited 992
20.23 Electric Field Examples 993
20.24 Conductivity and Permittivity of Common Materials 994
References 995
Chapter 21: Magnetic Fields 1003
21.1 Moving Charges: Source of All Magnetic Fields 1003
21.2 Magnetic Dipoles 1005
21.3 Effects of the Magnetic Field 1008
21.4 The Vector Magnetic Potential and Potential Momentum 1018
21.5 Magnetic Materials 1019
21.6 Magnetism and Quantum Physics 1022
References 1024
Chapter 22: Electromagnetic Transients and EMI 1027
22.1 Line Disturbances 1027
22.2 Circuit Transients 1028
22.3 Electromagnetic Interference 1030
Chapter 23: Traveling Wave Effects 1033
23.1 Basics 1033
23.2 Transient Effects 1035
23.3 Mitigating Measures 1038
Trang 15Chapter 24: Transformers 1039
24.1 Voltage and Turns Ratio 1040
Chapter 25: Electromagnetic Compatibility (EMC) 1047
25.1 Introduction 1047
25.2 Common Terms 1048
25.3 The EMC Model 1049
25.4 EMC Requirements 1052
25.5 Product design 1054
25.6 Device Selection 1056
25.7 Printed Circuit Boards 1056
25.8 Interfaces 1057
25.9 Power Supplies and Power-Line Filters 1058
25.10 Signal Line Filters 1059
25.11 Enclosure Design 1061
25.12 Interface Cable Connections 1063
25.13 Golden Rules for Effective Design for EMC 1065
25.14 System Design 1066
25.15 Buildings 1069
25.16 Conformity Assessment 1070
25.17 EMC Testing and Measurements 1072
25.18 Management Plans 1075
References 1076
Appendix A: General Reference 1077
A.1 Standard Electrical Quantities—Their Symbols and Units 1077
Appendix B: 1081
B.1 Differential Equations 1081
Index 1091
Note from the Publisher: The authors of this book are from around the world and as such symbols vary between US and UK styles
Trang 16Alan Bensky MScEE (Chapter 19) is an electronics engineering consultant with over
25 years of experience in analog and digital design, management, and marketing
Specializing in wireless circuits and systems, Bensky has carried out projects for
varied military and consumer applications He is the author of Short-range Wireless Communication, Second Edition , published by Elsevier, 2004, and has written several
articles in international and local publications He has taught courses and gives lectures
on radio engineering topics Bensky is a senior member of IEEE
John Bird BSc (Hons), CEng, CMath, CSci, FIET, MIEE, FIIE, FIMA, FCollT Royal
Naval School of Marine Engineering, HMS Sultan, Gosport; formerly University of Portsmouth and Highbury College, Portsmouth, U.K., (Chapters 1, 2, 3, 4, 5, 6, 7, 8,
Appendix A) is the author of Electrical Circuit Theory and Technology, and over 120
textbooks on engineering and mathematical subjects, is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, U.K
More recently, he has combined freelance lecturing at the University of Portsmouth, with technical writing and Chief Examiner responsibilities for City and Guilds
Telecommunication Principles and Mathematics, and examining for the International Baccalaureate Organisation
John Bird is currently a Senior Training Provider at the Royal Naval School of Marine Engineering in the Defence College of Marine and Air Engineering at H.M.S Sultan, Gosport, Hampshire, U.K The school, which serves the Royal Navy, is one of Europe’s largest engineering training establishments
Bill Bolton (Chapter 18, Appendix B.) is the author of Control Systems , and many
engineering textbooks, including the best-selling books Programmable Logic Controllers (Newnes) and Mechatronics (Pearson—Prentice-Hall), and has formerly been a senior
lecturer in a College of Technology, Head of Research, Development and Monitoring
at the Business and Technician Education Council, a member of the Nuffi eld Advanced Physics Project, and a consultant on a British Government Technician Education Project
in Brazil and on Unesco projects in Argentina and Thailand
Trang 17Izzat Darwazeh (Chapter 9) is the author of Introduction to Linear Circuit Analysis and
Modelling He holds the University of London Chair of Communications Engineering
in the Department of Electronic and Electrical at UCL He obtained his fi rst degree
in Electrical Engineering from the University of Jordan in 1984 and the MSc and
PhD degrees, from the University of Manchester Institute of Science and Technology (UMIST), in 1986 and 1991, respectively He worked as a research Fellow at the
University of Wales-Bangor—U.K from 1990 till 1993, researching very high speed optical systems and circuits He was a Senior Lecturer in Optoelectronic Circuits and Systems in the Department at Electrical Engineering and Electronics at UMIST He moved to UCL in October 2001 where he is currently the Head of Communications and Information System (CIS) group and the Director of UCL Telecommunications for Industry Programme He is a Fellow of the IET and a Senior Member of the IEEE His teaching covers aspects of wireless and optical fi bre communications,
telecommunication networks, electronic circuits and high speed integrated circuits
and MMICs He lectures widely in the U.K and overseas His research interests are mainly in the areas of wireless system design and implementation, high speed optical communication systems and networks, microwave circuits and MMICs for optical fi bre applications and in mobile and wireless communication circuits and systems He has authored/co-authored more than 120 research papers He has co-authored (with Luis Moura) a book on Linear Circuit Analysis and Modelling (Elsevier 2005) and is the co-editor of the IEE book on Analogue Optical Communications (IEE 1995) He
collaborates with various telecommunications and electronic industries in the U.K and overseas and has acted as a consultant to various academic, industrial, fi nancial and government organisations
Walt Kester (Chapters 16, 17) is the author of Mixed-Signal and DSP Design Techniques
He is a corporate staff applications engineer at Analog Devices For over 35 years at Analog Devices, he has designed, developed, and given applications support for high-speed ADCs, DACs, SHAs, op amps, and analog multiplexers Besides writing many papers and articles, he prepared and edited eleven major applications books which form the basis for the Analog Devices world-wide technical seminar series including the topics of
op amps, data conversion, power management, sensor signal conditioning, mixed-signal,
and practical analog design techniques He also is the editor of The Data Conversion Handbook , a 900 page comprehensive book on data conversion published in 2005 by Elsevier Walt has a BSEE from NC State University and MSEE from Duke University
Trang 18Michael Laughton BASc, (Toronto), PhD (London), DSc (Eng.) (London), FREng,
FIEE, CEng (Chapters 25) is the editor of Electrical Engineer’s Reference Book, 16 th Edition He is the Emeritus Professor of Electrical Engineering of the University of
London and former Dean of Engineering of the University and Pro-Principal of Queen Mary and Westfi eld College, and is currently the U.K representative on the Energy Committee of the European National Academies of Engineering, a member of energy and environment policy advisory groups of the Royal Academy of Engineering, the Royal Society and the Institution of Electrical Engineers as well as the Power Industry Division Board of the Institution of Mechanical Engineers He has acted as Specialist Adviser
to U.K Parliamentary Committees in both upper and lower Houses on alternative and renewable energy technologies and on energy effi ciency He was awarded The Institution
of Electrical Engineers Achievement Medal in 2002 for sustained contributions to
electrical power engineering
Andrew Leven (Chapter 17, 19) is the author of Telecommunications Circuits and
Technology He holds a diploma in Radio Technology, HNC, BSc (Hons) Electronics,
MSc Astronomy, C Eng M.I.E.E, Teaching Diploma, M.I.P., International Education and Training Consultant (Formerly Senior Lecturer in Telecommunications, Electronics and Fibre Optics at James Watt College of Higher Education, U.K.)
A Maddocks (Chapter 25) was a contributor to Electrical Engineer’s Reference Book,
16th Edition
Clive “ Max ” Maxfi eld (Chapter 10) is the author of Bebop to the Boolean Boogie He
is six feet tall, outrageously handsome, English and proud of it In addition to being a hero, trendsetter, and leader of fashion, he is widely regarded as an expert in all aspects of electronics and computing (at least by his mother)
After receiving his B.Sc in Control Engineering in 1980 from Sheffi eld Polytechnic (now Sheffi eld Hallam University), England, Max began his career as a designer of central processing units for mainframe computers During his career, he has designed everything from ASICs to PCBs and has meandered his way through most aspects of Electronics Design Automation (EDA) To cut a long story short, Max now fi nds himself President
of TechBites Interactive (www.techbites.com) A marketing consultancy, TechBites specializes in communicating the value of its clients ’ technical products and services
to non-technical audiences through a variety of media, including websites, advertising, technical documents, brochures, collaterals, books, and multimedia
Trang 19In addition to numerous technical articles and papers appearing in magazines and
at conferences around the world, Max is also the author and co-author of a number
of books, including Bebop to the Boolean Boogie (An Unconventional Guide to
Electronics) , Designus Maximus Unleashed (Banned in Alabama) , Bebop BYTES Back (An Unconventional Guide to Computers) , EDA: Where Electronics Begins , The Design Warrior’s Guide to FPGAs , and How Computers Do Math ( www.diycalculator.com ).
In his spare time (Ha!), Max is co-editor and co-publisher of the web-delivered
electronics and computing hobbyist magazine EPE Online ( www.epemag.com ) Max
also acts as editor for the Programmable Logic DesignLine website ( www.pldesignline.com ) and for the iDESIGN section of the Chip Design Magazine website ( www
chipdesignmag.com )
On the off-chance that you’re still not impressed, Max was once referred to as an
“ industry notable ” and a “ semiconductor design expert ” by someone famous who wasn’t
prompted, coerced, or remunerated in any way!
Luis Moura (Chapter 9) is the author of Introduction to Linear Circuit Analysis and
Modelling He received the diploma degree in electronics and telecommunications from
the University of Aveiro, Portugal, in 1991, and the PhD degree in electronic engineering from the University of North Wales, Bangor, U.K in 1995 From 1995 to 1997 he worked
as a research Fellow in the Telecommunications Research Group at University College London, U.K He is currently a Lecturer in Electronics at the University of Algarve, Portugal In 2007 he took one year leave of absence to work in the company Lime
Microsystems U.K as Senior Design Engineer He was designing frequency synthesisers for multi-mode/multi-standard wireless transceivers
Ron Schmitt (Chapters 20, 21) is the author of Electromagnetics Explained He is the
former Director of Electrical Engineering, Sensor Research and Development Corp Orono, Maine
Keith H Sueker (Chapters 15, 22, 23) is the author of Power Electronics Design Sueker
received his BEE with High Distinction from the University of Minnesota, he continued his education at Illinois Institute of Technology where he received his MSEE, he also completed his course work for his PhD He spent many years working for Westinghouse Electric Corporation in various positions He then moved on to Robicon Corporation
as a consulting engineer, he retired in 1993 His responsibilities included analytical
Trang 20techniques and equipment design for power factor correction and harmonic mitigation Sueker has written a number of IEEE papers and several articles for trade publications Also, he has prepared a monograph and 90 minute video tape on these subjects He and
Mr R P Stratford have presented tutorial sessions on power factor and harmonics at IEEE-IAS annual meetings, and he has presented additional tutorials in other cities He also presented a tutorial on transformers for the local IEEE-IAS in the spring of 1999 and repeated it in the fall of 2003 Sueker delivered a tutorial on power electronics for the local IEEE-IAS/PES in the spring of 2005 He was also pleased to serve on the IEEE committee for awarding the “ IEEE Medal for Engineering Excellence ” for four years
He is currently a Life Senior Member of the IEEE and also a registered Professional Engineer in the Commonwealth of Pennsylvania
Mike Tooley (Chapters 11, 12, 14, 24) is the author of Electronics Circuits He is the
former Director of Learning Technology at Brooklands College, Surrey, U.K
Douglas Warne (Chapters 25) is the editor of Electrical Engineers Reference book,
16 th Edition Warne graduated from Imperial College London in 1967 with a 1st class
honours degree in electrical engineering, during this time he had a student apprenticeship with AEI Heavy Plant Division, Rugby, 1963–1968 He is currently self-employed, and has taken on such projects as Co-ordinated LINK PEDDS programme for DTI, and the electrical engineering, electrical machines and drives and ERCOS programmes for EPSRC Initiated and manage the NETCORDE university-industry network for identifying and launching new R & D projects He has acted as co-ordinator for the
industry-academic funded ESR Network, held the part-time position of Research Contract Co-ordinator for the High Voltage and Energy Systems group at University of Cardiff and monitored several projects funded through the DTI Technology Programme
Tim Williams (Chapters 11, 13, 15) is the author of The Circuit Designer’s Companion.
He is employed with Elmac Services, Chichester, U.K
Trang 22An Introduction to Electric Circuits
John Bird
1.1 SI Units
The system of units used in engineering and science is the Système International d’Unités (International system of units), usually abbreviated to SI units, and is based on the metric system This was introduced in 1960 and is now adopted by the majority of countries as the offi cial system of measurement
The basic units in the SI system are listed with their symbols, in Table 1.1
Derived SI units use combinations of basic units and there are many of them Two
examples are:
● Velocity—meters per second (m/s)
● Acceleration—meters per second squared (m/s 2 )
Table 1.1 : Basic SI units
Trang 23Table 1.2 : Six most common multiples
M mega multiply by 1,000,000 (i.e., 10 6 )
k kilo multiply by 1,000 (i.e., 10 3 )
m milli divide by 1,000 (i.e., 10 3 )
μ micro divide by 1,000,000 (i.e., 10 6 )
n nano divide by 1,000,000,000 (i.e., 10 9 )
p pico divide by 1,000,000,000,000 (i.e., 10 12 )
SI units may be made larger or smaller by using prefi xes that denote multiplication or division by a particular amount The six most common multiples, with their meaning, are listed in Table 1.2
1.2 Charge
The unit of charge is the coulomb (C) where one coulomb is one ampere second
(1 coulomb 6.24 10 18 electrons) The coulomb is defi ned as the quantity of
electricity that fl ows past a given point in an electric circuit when a current of one ampere
is maintained for one second Thus,
The unit of force is the newton (N) where one newton is one kilogram meter per
second squared The newton is defi ned as the force which, when applied to
Trang 24a mass of one kilogram, gives it an acceleration of one meter per second squared
Mass 200 g 0.2 kg and acceleration due to gravity, g 9.81 m/s 2
Force acting downwards weight mass acceleration
The unit of work or energy is the joule (J) where one joule is one Newton meter
The joule is defi ned as the work done or energy transferred when a force of
one newton is exerted through a distance of one meter in the direction of the force Thus,
work done on a body, in joules W Fs
where F is the force in Newtons and s is the distance in meters moved by the body in the
direction of the force Energy is the capacity for doing work
Trang 251.5 Power
The unit of power is the watt (W) where one watt is one joule per second Power is
defi ned as the rate of doing work or transferring energy Thus,
(a) Work done force distance and
force mass acceleration
Trang 261.6 Electrical Potential and e.m.f
The unit of electric potential is the volt (V) where one volt is one joule per coulomb One
volt is defi ned as the difference in potential between two points in a conductor which, when carrying a current of one ampere, dissipates a power of one watt, i.e.,
volts watts
amperes
joules/secondamperesjoulesampere secon
dds
joulescoulombs
A change in electric potential between two points in an electric circuit is called a
potential difference The electromotive force (e.m.f ) provided by a source of energy such
as a battery or a generator is measured in volts
1.7 Resistance and Conductance
The unit of electric resistance is the ohm ( Ω ) where one ohm is one volt per ampere It
is defi ned as the resistance between two points in a conductor when a constant electric potential of one volt applied at the two points produces a current fl ow of one ampere in the conductor Thus,
resistance, in ohms R V
I
where V is the potential difference across the two points in volts and I is the current
fl owing between the two points in amperes
The reciprocal of resistance is called conductance and is measured in siemens (S) Thus, conductance, in siemens G
Trang 271.8 Electrical Power and Energy
When a direct current of I amperes is fl owing in an electric circuit and the voltage across
the circuit is V volts, then,
power, in watts P VI
Electrical energy Power time
VIt joules
Although the unit of energy is the joule, when dealing with large amounts of energy, the
unit used is the kilowatt hour ( kWh ) where
Trang 28Hence, the current taken from the supply is 4 A
1.9 Summary of Terms, Units and Their Symbols
Table 1.3 : Electrical terms, units, and symbols
Acceleration a meters per second squared m/s 2 or m s 2
Trang 291.10 Standard Symbols for Electrical Components
Symbols are used for components in electrical circuit diagrams and some of the more common ones are shown in Figure 1.1
1.11 Electric Current and Quantity of Electricity
All atoms consist of protons, neutrons and electrons The protons, which have
positive electrical charges, and the neutrons, which have no electrical charge, are
contained within the nucleus Removed from the nucleus are minute negatively charged
particles called electrons Atoms of different materials differ from one another by having
different numbers of protons, neutrons and electrons An equal number of protons and electrons exist within an atom and it is said to be electrically balanced, as the positive and
Battery of 3 cells Alternative symbol
for battery
Alternative symbol for fixed resister Variable resistor
Two conductors crossing but not joined
Two conductors joined together
Figure 1.1 : Common electrical component symbols
Trang 30negative charges cancel each other out When there are more than two electrons
in an atom the electrons are arranged into shells at various distances from the
nucleus
All atoms are bound together by powerful forces of attraction existing between
the nucleus and its electrons Electrons in the outer shell of an atom, however, are
attracted to their nucleus less powerfully than are electrons whose shells are nearer the nucleus
It is possible for an atom to lose an electron; the atom, which is now called an ion ,
is not now electrically balanced, but is positively charged and is thus able to attract
an electron to itself from another atom Electrons that move from one atom to another are called free electrons and such random motion can continue indefi nitely However,
if an electric pressure or voltage is applied across any material there is a tendency
for electrons to move in a particular direction This movement of free electrons,
known as drift , constitutes an electric current fl ow Thus current is the rate of movement
of charge
Conductors are materials that contain electrons that are loosely connected to the nucleus
and can easily move through the material from one atom to another
Insulators are materials whose electrons are held fi rmly to their nucleus
The unit used to measure the quantity of electrical charge Q is called the coulomb C
(where 1 coulomb 6.24 10 18 electrons)
If the drift of electrons in a conductor takes place at the rate of one coulomb per second the resulting current is said to be a current of one ampere
Thus, 1 ampere 1 coulomb per second or 1 A 1 C/s Hence, 1 coulomb 1 ampere second or 1 C 1 As Generally, if I is the current in amperes and t the time in seconds during which the current fl ows, then I t represents the quantity of electrical charge in
coulombs, i.e., quantity of electrical charge transferred,
Q coulombsI t
Example 1.9
What current must fl ow if 0.24 coulombs is to be transferred in 15 ms?
Trang 311.12 Potential Difference and Resistance
For a continuous current to fl ow between two points in a circuit a potential difference
or voltage , V, is required between them; a complete conducting path is necessary to and
from the source of electrical energy The unit of voltage is the volt, V
Figure 1.2 shows a cell connected across a fi lament lamp Current fl ow, by convention,
is considered as fl owing from the positive terminal of the cell, around the circuit to the negative terminal
The fl ow of electric current is subject to friction This friction, or opposition, is called
resistance R and is the property of a conductor that limits current The unit of resistance
Figure 1.2 : Current fl ow
Trang 32is the ohm ; 1 ohm is defi ned as the resistance which will have a current of 1 ampere
fl owing through it when 1 volt is connected across it, i.e.,
resistance potential difference
current
R
1.13 Basic Electrical Measuring Instruments
An ammeter is an instrument used to measure current and must be connected in series
with the circuit Figure 1.2 shows an ammeter connected in series with the lamp to measure the current fl owing through it Since all the current in the circuit passes through the ammeter it must have a very low resistance
A voltmeter is an instrument used to measure voltage and must be connected in parallel
with the part of the circuit whose voltage is required In Figure 1.2 , a voltmeter is
connected in parallel with the lamp to measure the voltage across it To avoid a signifi cant current fl owing through it, a voltmeter must have a very high resistance
An ohmmeter is an instrument for measuring resistance
A multimeter , or universal instrument, may be used to measure voltage, current and resistance The oscilloscope may be used to observe waveforms and to measure voltages
and currents The display of an oscilloscope involves a spot of light moving across a screen The amount by which the spot is defl ected from its initial position depends on the voltage applied to the terminals of the oscilloscope and the range selected The displacement is calibrated in volts per cm For example, if the spot is defl ected 3 cm and the volts/cm switch is on 10 V/cm, then the magnitude of the voltage is 3 cm 10 V/cm, i.e., 30 V
1.14 Linear and Nonlinear Devices
Figure 1.3 shows a circuit in which current I can be varied by the variable resistor R2
For various settings of R2 , the current fl owing in resistor R1 , displayed on the ammeter,
and the p.d across R1 , displayed on the voltmeter, are noted and a graph is plotted of p.d against current The result is shown in Figure 1.4(a) where the straight line graph passing through the origin indicates that current is directly proportional to the voltage Since the
Trang 33gradient, i.e., (voltage/current), is constant, resistance R1 is constant A resistor is thus an example of a linear device
If the resistor R1 in Figure 1.3 is replaced by a component such as a lamp, then the graph shown in Figure 1.4(b) results when values of voltage are noted for various current
readings Since the gradient is changing, the lamp is an example of a nonlinear device
Figure 1.3 : Circuit in which current can be varied
Figure 1.4 : Graphs of voltage vs current: (a) linear device (b) nonlinear device
Trang 34Example 1.11
The current fl owing through a resistor is 0.8 A when a voltage of 20 V is applied
Determine the value of the resistance
1.16 Multiples and Submultiples
Currents, voltages and resistances can often be very large or very small Thus multiples and submultiples of units are often used The most common ones, with an example of each, are listed in Table 1.4
Table 1.4 : Common multiples and submultiples of units
M mega multiply by 1,000,000 (i.e., 10 6 ) 2 M Ω 2,000,000 ohms
k kilo multiply by 1000 (i.e., 10 3 ) 10 kV 10,000 volts
m milli divide by 1000 (i.e , 10 3 )
1000 A0.025 amperes
μ
Trang 35
12 00050
Trang 360 05
12 0005
600 000 orr 600 k 0.6 M
or
Ω Ω
A
Figure 1.5 : Current/voltage for two resistors A and B
Trang 371.17 Conductors and Insulators
A conductor is a material having a low resistance which allows electric current to fl ow
in it All metals are conductors and some examples include copper, aluminium, brass, platinum, silver, gold and carbon
An insulator is a material having a high resistance which does not allow electric current
to fl ow in it Some examples of insulators include plastic, rubber, glass, porcelain, air, paper, cork, mica, ceramics and certain oils
1.18 Electrical Power and Energy
1.18.1 Electrical Power
Power P in an electrical circuit is given by the product of potential difference V and current I The unit of power is the watt , W Hence,
P wattsV I From Ohm’s law, V IR.
Substituting for V in equation (1.1) gives:
Trang 38Example 1.17
A 100 W electric light bulb is connected to a 250 V supply Determine (a) the current
fl owing in the bulb, and (b) the resistance of the bulb
,100250
10025
25250
0 4
25004
0.4 A 625
An electric kettle has a resistance of 30 Ω What current will fl ow when it is connected to
a 240 V supply? Find also the power rating of the kettle
240 8 1920
8 A
1.95 kW
rating of kettle
Trang 39Potential difference across winding, V IR 5 100 500 V
Power dissipated by coil, P I2R 5 2 100
Electrical energy power time
If the power is measured in watts and the time in seconds then the unit of energy is
watt-seconds or joules If the power is measured in kilowatts and the time in hours then the unit of energy is kilowatt-hours , often called the unit of electricity The electricity
meter in the home records the number of kilowatt-hours used and is thus an energy meter
Example 1.22
A 12 V battery is connected across a load having a resistance of 40 Ω Determine
the current fl owing in the load, the power consumed and the energy dissipated in
2 minutes