1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 6 (677)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 6 (677)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 154,6 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Khối đa diện đều nào sau đây có mặt không phải là tam giác[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Tứ diện đều B Nhị thập diện đều C Thập nhị diện đều D Bát diện đều.

Câu 2. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 3. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

Câu 4. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

Câu 5. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

Câu 6. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2i B P= −1+ i

√ 3

2 . C P= −1 − i

√ 3

2 . D P= 2

Câu 7. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 8. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

2016

4035

2018.

Câu 9. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 10. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 11. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

Trang 2

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x).

Trong hai câu trên

A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.

Câu 12. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

2a3√ 3

5a3√ 3

a3√ 3

2 .

Câu 13 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 14. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 15. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h. B V = 1

3S h. C V = S h D V = 3S h

Câu 16. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 17. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 18. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 19. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 20. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

36 .

Trang 3

Câu 21. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

5.

Câu 22. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B −2 < m < −1 C (−∞; −2) ∪ (−1; +∞) D −2 ≤ m ≤ −1.

Câu 23. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [1;+∞) C [3;+∞) D (−∞; 1].

Câu 24. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 25. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B lim

x→a + f(x)= lim

x→a − f(x)= a

C f (x) có giới hạn hữu hạn khi x → a D lim

x→af(x)= f (a)

Câu 26. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

3

√ 3

2 .

Câu 27. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 28. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 29. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3√15

a3√15

a3

3 .

Câu 30. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 31. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 2

√ 2

Câu 32. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là 4 B Phần thực là 3, phần ảo là −4.

Câu 33. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 34. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 35. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Trang 4

Câu 36. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 37. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1

e. B M= 1

e, m = 0 C M = e, m = 0 D M = e, m = 1

Câu 38. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 39. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 40. Khối đa diện đều loại {3; 4} có số mặt

Câu 41. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

Câu 42. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = [2; 1] B. D = (−2; 1) C. D = R D. D = R \ {1; 2}

Câu 43. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 2

11 − 3

3 . B Pmin = 9

11+ 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 9

11 − 19

Câu 44. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

2√

3√ 3

a3√ 2

24 .

Câu 45. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 46. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 8a

a

5a

2a

9 .

Câu 47 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 3, 03 triệu đồng B 2, 20 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.

Câu 48. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 1) B A0(−3; 3; 3) C A0(−3; −3; −3) D A0(−3; −3; 3)

Trang 5

Câu 49. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 50. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Hai hình chóp tam giác.

D Hai hình chóp tứ giác.

Câu 51. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 52. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 53. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 3, 5 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.

Câu 54. Tứ diện đều thuộc loại

Câu 55. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1

2x3ln 10.

Câu 56. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = R C. D = (1; +∞) D. D = (−∞; 1)

Câu 57. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 58. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 59 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

D.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 60. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 61. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 62. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Trang 6

Câu 63. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. 2a

3√

6

a3

√ 3

a3

√ 3

a3

√ 6

12 .

Câu 64. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

e3

Câu 65. Khối đa diện đều loại {4; 3} có số cạnh

Câu 66. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 1

2x ln x. C y

0 = 2x ln x D y0 = 2x ln 2

Câu 67. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 68. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 69. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 70. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 71. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

2+ (y + 1)2+ (z + 3)2= 9

4.

C (x − 3)2+ (y − 1)2+ (z − 3)2= 9

4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

Câu 72 Phát biểu nào sau đây là sai?

n = 0

nk = 0

Câu 73. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 74. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 75. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

Trang 7

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

D.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

Câu 76. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 77. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 78. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

C F(x)= G(x) trên khoảng (a; b)

D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

Câu 79. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 80. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a

√ 39

a

√ 39

a

√ 39

16 .

Câu 81. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 82. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 83. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 84. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 85. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. √ ab

a2+ b2 C. ab

2√a2+ b2

Câu 86 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

dx = x + C, C là hằng số

C.

Z

xαdx= xα+1

α + 1+ C, C là hằng số. D.

Z 1

xdx= ln |x| + C, C là hằng số

Câu 87. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Trang 8

Câu 88. Tính lim

x→3

x2− 9

x −3

Câu 89. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 90. Tính lim

x→1

x3− 1

x −1

Câu 91. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng 2n+ 1

B Số cạnh của khối chóp bằng 2n.

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số mặt của khối chóp bằng 2n+1.

Câu 92. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 93. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

3√ 5

a3

√ 15

a3

√ 6

3 .

Câu 95. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = n2− 2

5n − 3n2 C un = 1 − 2n

5n+ n2 D un = n2− 3n

n2

Câu 96. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

sin n

1

n.

Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3√

3

2a3

4a3

4a3√ 3

3 .

Câu 98. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

A. 27

Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

4a3√ 3

a3√ 3

8a3√ 3

3 .

Câu 100. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√3

a3√3

4 .

Trang 9

Câu 101. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

Câu 102. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 103. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 104. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 − ln x B y0 = 1 + ln x C y0 = x + ln x D y0 = ln x − 1

Câu 105. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)g(x)]= ab

Câu 106. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 107. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 108. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (−∞; 0).

Câu 109. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

3

!n

e

!n

Câu 110. Dãy số nào có giới hạn bằng 0?

A un= 6

5

!n

B un = −2

3

!n C un = n3− 3n

n+ 1 . D un = n2− 4n

Câu 111. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 112. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 113. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.

Câu 114. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 115. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Trang 10

Câu 116. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 117 Hình nào trong các hình sau đây không là khối đa diện?

Câu 118. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 119. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là 4 B Phần thực là 4, phần ảo là −1.

C Phần thực là −1, phần ảo là −4 D Phần thực là 4, phần ảo là 1.

Câu 120. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 121. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2

và y= x

A. 9

11

Câu 122. Tính lim n −1

n2+ 2

Câu 123. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 124. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 125. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm

Ađến đường thẳng BD0bằng

b2+ c2

a2+ b2+ c2 B. abc

b2+ c2

a2+ b2+ c2 C. c

a2+ b2

a2+ b2+ c2 D. b

a2+ c2

a2+ b2+ c2

Câu 126. Cho hàm số y= x3

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng −∞;1

3

!

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 127. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ qlog23x+ 1+4m−

1= 0 có ít nhất một nghiệm thuộc đoạnh

1; 3

3i

Câu 128. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) có giá trị lớn nhất trên K.

Câu 129. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 130. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

HẾT

Ngày đăng: 11/04/2023, 11:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN