1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (779)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề luyện thi
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 124,2 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biể[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 2 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A 0 < m < 2 B m= 2 C −2 ≤ m ≤ 2 D −2 < m < 2.

Câu 3 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A 3√3(m2) B. 3

√ 3

√ 3

2)

Câu 4 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

B Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

D Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

Câu 5 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD

A. V

V

V

V

3.

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 B (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2= 1

3.

C (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1

3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3

Câu 7 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 8 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4;+∞)

B [7

4; 2]S[22;+∞)

Câu 9 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n4= (1; 1; −1) B.→−n1 = (−1; 1; 1) C.→−n3 = (1; 1; 1) D.→−n2 = (1; −1; 1)

Câu 10 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:

A y′= πxπ B y′ = xπ−1 C y′ = π1xπ−1 D y′ = πxπ−1

Trang 2

Câu 11 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 12 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A N(2; 1; 2) B P(1; 2; 3) C Q(1; 2; −3) D M(2; −1; −2).

Câu 13 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng

định nào dưới đây đúng?

Câu 14 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn

z1

+

z2

= 2?

Câu 15 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

11

3 .

Câu 16 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 17 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 18 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B Chỉ có số 1 C C.Truehỉ có số 0 D Không có số nào Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|= 34 C |z|= 5

√ 34

√ 34

3 .

Câu 20 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −21008+ 1 B −21008 C −22016 D 21008

Câu 21 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 22 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 23 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A |z|= 4 B z là số thuần ảo C z= 1

Câu 24 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 25 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2 z1

Trang 3

Câu 26 Mệnh đề nào sau đây sai?

A.R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

B. R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R

C.R( f (x) − g(x)) = R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

D.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

Câu 27 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z − 4 = 0 B 3x − 2y+ z − 12 = 0

C 3x − 2y+ z + 4 = 0 D 3x+ 2y + z − 4 = 0

Câu 28 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng

(−2; 3) Tính I = R2

−1[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4

Câu 29 F(x) là một nguyên hàm của hàm số y= xex2 Hàm số nào sau đây không phải là F(x)?

A F(x)= 1

2(e

x2 + 5) B F(x)= −1

2(2 − e

x2) C F(x) = −1

2e

x2 + C D F(x) = 1

2e

x2 + 2

Câu 30 Tính tích phân I = R12xexdx

Câu 31 Giá trị củaR0

−1ex+1dxbằng

Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ

trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:

A C(1; 0; 2) B C(−1; −4; 4) C C(1; 4; 4) D C(−1; 0; −2).

Câu 33 ChoR3

a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

A (0;1

1

Câu 34 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2√13 B T = 2

√ 85

√ 97

Câu 36 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

3

√ 2

Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

3

2.

Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

A |A| < 1 B |A| ≤ 1 C |A| ≥ 1 D |A| > 1.

Câu 39 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

2.

Trang 4

Câu 40 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A Phần thực của z là số âm B z là một số thực không dương.

Câu 41 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 42 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A. 1

√ 15

√ 15

√ 5

3 .

Câu 44 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

Câu 45 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Câu 46 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

2

5a√2

5a√3

5a√3

Câu 47 Cho bất phương trình 3

√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình đúng với mọi x ∈ [ 1; 3].

B Bất phương trình đúng với mọi x ∈ (4;+∞)

C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

D Bất phương trình vô nghiệm.

Câu 48 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

3.

Câu 49 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600

Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (1; 14; 15)

C 2→−u + 3−→v = (2; 14; 14) D 2→−u + 3−→v = (1; 13; 16)

Trang 5

HẾT

Ngày đăng: 11/04/2023, 10:54

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN