1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (779)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 122,74 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞;−2] và[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A [7

4; 2]S[22;+∞) B (7

4; 2]S[22;+∞) C (7

4;+∞)

D [22;+∞)

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(1; 2; 0) B A(0; 0; 3) C A(1; 0; 3) D A(0; 2; 3).

Câu 3 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; −1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; 1; 2).

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − 2y − 2 = 0 B (P) : x + y + 2z = 0 C (P) : x − y − 2z = 0 D (P) : x − y + 2z = 0.

Câu 6 Tìm nghiệm của phương trình 2x = (√3)x

Câu 7 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 8 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 9 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 9

18

4

1

7.

Câu 10 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 11 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 12 Phần ảo của số phức z= 2 − 3i là

Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3= (1; 1; 1) B.→−n2 = (1; −1; 1) C.→−n1 = (−1; 1; 1) D.→−n4 = (1; 1; −1)

Trang 2

Câu 14 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Câu 15 Cho hình chóp đều S ABCD có chiều cao a, AC = 2a (tham khảo hình bên)

Khoảng cách từ B đến mặt phẳng (S CD) bằng

A. 2

3

√ 2

√ 3

√ 2a

Câu 16 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 17 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 18 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|= 5

√ 34

√ 34

3 .

Câu 20 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 21 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số thực không âm.

C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực.

Câu 22 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 23 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 24 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 25 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là3 và phần ảo là 2 B Phần thực là 3 và phần ảo là 2i.

C Phần thực là −3 và phần ảo là−2 D Phần thực là−3 và phần ảo là −2i.

Câu 26 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng

(−2; 3) Tính I= R−12[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4

Câu 27 Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (α) : 2x − 3y − z − 1= 0 Điểm nào dưới đây không thuộc mặt phẳng (α)

A P(3; 1; 3) B N(4; 2; 1) C Q(1; 2; −5) D M(−2; 1; −8).

Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là

A (x − 2)2+ y2+ z2= 3 B (x − 2)2+ y2+ z2 = 9

C (x+ 2)2+ y2+ z2= 3 D (x+ 2)2+ y2+ z2 = 9

Câu 29 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4

3 f(x)= 4 Tích phân R3

0 f(x) bằng

Trang 3

Câu 30 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng.

A F(x)= f′(x)+ C B F′(x)= f (x) C F′(x)+ C = f (x) D F(x)= f′(x)

Câu 31 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e

A F(x)= ex +1. B F(x)= ex+ 1 C F(x) = e2x D F(x)= ex

Câu 32 Tìm nguyên hàm I = R xcosxdx

A I = x2sinx

2 + C

Câu 33 BiếtR18 f(x)= −2; R4

1 f(x)= 3; R4

1 g(x)= 7 Mệnh đề nào sau đây sai?

A.R14[4 f (x) − 2g(x)]= −2 B. R14[ f (x)+ g(x)] = 10

Câu 34 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B |z| < 1

1

2 < |z| < 3

3

2 ≤ |z| ≤ 2.

Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

4;

5 4

!

4;+∞

!

2;

9 4

!

Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 3

2 < |z| < 2 B 2 < |z| < 5

1

2 < |z| < 3

5

2 < |z| < 7

2.

Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 42 B P=

|z|2− 22 C P = (|z| − 4)2 D P = (|z| − 2)2

Câu 40 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A 3 < |z| < 5 B. 5

2 < |z| < 4 C. 3

2 < |z| < 3 D. 1

2 < |z| < 2

Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1

2. B |w|min= 1 C |w|min = 2 D |w|min = 3

2.

Câu 42 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Trang 4

Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c

Câu 45 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 46 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 47 Hàm số nào trong các hàm số sau đồng biến trên R.

x+ 2 .

Câu 48 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y + 2)2+ (z − 4)2= 1

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 D (x − 1)2+ (y − 2)2+ (z − 4)2= 2

Câu 50 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Trang 5

HẾT

Ngày đăng: 11/04/2023, 10:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN