Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0;[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2).
Câu 2 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√
ba3
A. m
4m2− 3
m2− 12
m2− 12
Câu 3 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất
A −2 < m < 2 B 0 < m < 2 C −2 ≤ m ≤ 2 D m= 2
Câu 4 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
B Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
D Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
Câu 5 Cho hàm số f (x) thỏa mãn f′′(x)= 12x2+ 6x − 4 và f (0) = 1, f (1) = 3 Tính f (−1)
A f (−1)= −5 B f (−1)= −1 C f (−1)= 3 D f (−1)= −3
Câu 6 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A [7
4; 2]S[22;+∞) D (7
4;+∞)
Câu 7 Tìm nghiệm của phương trình 2x = (√3)x
Câu 8 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (−3; 1) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (−∞; −3) Câu 9 NếuR02 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 10 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d là khoảng cách từ O đến (P) Khẳng
định nào dưới đây đúng?
Câu 11 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Trang 2Câu 12 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4 = (1; 1; −1) B.→−n1 = (−1; 1; 1) C.→−n3 = (1; 1; 1) D.→−n2 = (1; −1; 1)
Câu 13 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= −1
x2 B F′(x)= 1
′
(x)= 2
x2 D F′(x)= lnx
Câu 14 Cho khối lăng trụ đứng ABC · A′B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 6
3 a, thể tích khối lăng trụ đã cho bằng
A.
√
2
4 a
√ 2
2 a
√ 2
6 a
3
Câu 15 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
A. 1
Câu 16 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 17 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z+ z + 1 C z · z+ z + z + 1 D z2+ 2z + 1
Câu 18 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A −11
11
29
29
13.
Câu 19 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 20 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 21 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A −1 ≤ m ≤ 0 B m ≥ 1 hoặc m ≤ 0 C 0 ≤ m ≤ 1 D m ≥ 0 hoặc m ≤ −1 Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 23 Cho số phức z thỏa 25
1+ i +
1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?
Câu 24 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z là số thuần ảo B z= z C z= 1
Câu 25 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 26 Biết
1
R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
Trang 3Câu 27 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′
(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 28 Nguyên hàmR 1+ lnx
x dx(x > 0) bằng
A. 1
2ln
2x+ lnx + C B ln2x+ lnx + C C x+ 1
2ln
Câu 29 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng
A F′(x)= f (x) B F(x)= f′
(x)+ C C F(x) = f′
(x) D F′(x)+ C = f (x)
Câu 30 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2 = 9 B (x − 2)2+ y2+ z2 = 3
C (x − 2)2+ y2+ z2 = 9 D (x+ 2)2+ y2+ z2 = 3
Câu 31 Giá trị củaR0
−1ex+1dxbằng
Câu 32 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ
là
A (3; −1; −4) B (3; 1; 4) C (−3; −1; −4) D (−3; −1; 4).
Câu 33 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2
−1 f′(x) bằng:
Câu 34 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2√13 B T = 2
√ 85
√ 97
Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B |z| < 1
3
1
2 < |z| < 3
2.
Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 37 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 38 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8
3.
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2
√ 2
3 .
Câu 39 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 1
3
2.
Câu 40 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 22 B P=
|z|2− 42 C P = (|z| − 4)2
D P = (|z| − 2)2
Trang 4
Câu 42 Cho a, b, c là các số thực và z= −1
2 +
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
C a2+ b2+ c2+ ab + bc + ca D a2+ b2+ c2− ab − bc − ca
Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 44 Biết
π 2 R
0
sin 2xdx= ea Khi đó giá trị a là:
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 46 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRh + πR2 B St p = πRl + πR2 C St p = πRl + 2πR2 D St p = 2πRl + 2πR2
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1
Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
Câu 49 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
A P = 2 + 2(ln a)2
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2
(x2− 2x)dx
B.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx −
3
R
2
(x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2
(x2− 2x)dx
D.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3
R
2
|x2− 2x|dx
Trang 5HẾT