1. Trang chủ
  2. » Thể loại khác

Đề luyện thi thpt môn toán (548)

5 4 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,02 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng? A ln(ab2[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

A ln(ab2)= ln a + (ln b)2 B ln(ab)= ln a ln b

C ln(a

b)= ln a

2)= ln a + 2 ln b

Câu 2 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+ x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A 0 < m < 2 B −2 < m < 2 C −2 ≤ m ≤ 2 D m= 2

Câu 3 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 6

3x − 1

ln 2

(3x − 1) ln 2. C y

(3x − 1) ln 2. D y

′ = 2 3x − 1

ln 2

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(1; 1; 2) B I(0; 1; −2) C I(0; −1; 2) D I(0; 1; 2).

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1

2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d

A (P) : x − 2y − 2 = 0 B (P) : x − y − 2z = 0 C (P) : x + y + 2z = 0 D (P) : x − y + 2z = 0.

Câu 6 Cho a > 0 và a , 1 Giá trị của alog √

a 3bằng?

Câu 7 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A= a√6, S B= a√7 Tính góc giữa SC và mặt phẳng (ABC)

Câu 8 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 9 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; −2; 3) B (−1; 2; 3) C (−1; −2; −3) D (1; 2; −3).

Câu 10 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n3= (1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n2 = (1; −1; 1) D.→−n1 = (−1; 1; 1)

Câu 11 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

Câu 12 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

A. 8

Câu 13 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Trang 2

Câu 14 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

7

1

4.

Câu 15 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 4

18

9

1

7.

Câu 16 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 17 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 18 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 19 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 20 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 21 Với mọi số phức z, ta có |z+ 1|2bằng

A z · z+ z + z + 1 B z+ z + 1 C |z|2+ 2|z| + 1 D z2+ 2z + 1

Câu 22 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 23 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 24 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 25 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 26 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′(x)= 2x + 1 Giá trị f (2) − f (1) bằng

Câu 27 Tích phânR01e−x dx bằng

A. e −1

1

1

e − 1.

Câu 28 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ

A (−3; −1; −4) B (−3; −1; 4) C (3; 1; 4) D (3; −1; −4).

Trang 3

Câu 29 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng

(ABC) có phương trình là

A x+ y − z − 3 = 0 B x+ y − z + 1 = 0 C x − y+ z + 6 = 0 D 6x+ y − z − 6 = 0

Câu 30 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng đi qua trọng

tâm G của tam giác ABC và vuông góc với đường thẳng AC có phương trình là

A 3x − 2y+ z − 4 = 0 B 3x+ 2y + z − 4 = 0

C 3x − 2y+ z + 4 = 0 D 3x − 2y+ z − 12 = 0

Câu 31 Tìm nguyên hàm I = R xcosxdx

A I = x2sinx

2 + C

Câu 32 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x

A F(x)= sin2x B F(x)= −1

2cos2x. C F(x) = −cos2x D F(x)= −cos2x

Câu 33 ChoR1

0 f(x)= 2Rv `a R1

0 g(x)= 5 R1

0 [ f (x) − 2g(x)] bằng

Câu 34 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là một số thực không dương B z là số thuần ảo.

Câu 35 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 3

2 < |z| < 2 B 2 < |z| < 5

5

2 < |z| < 7

1

2 < |z| < 3

2.

Câu 38 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 39 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 3

1

2 < |z| < 3

2. C |z| <

1

2. D |z| > 2.

Câu 40 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1 B |w|min= 3

2. C |w|min = 1

2. D |w|min = 2

Câu 42 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Trang 4

Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v

A 2→−u + 3−→v = (1; 14; 15) B 2→−u + 3−→v = (3; 14; 16)

C 2→−u + 3−→v = (2; 14; 14) D 2→−u + 3−→v = (1; 13; 16)

Câu 45 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 27

29

23

25

4 .

Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD

Câu 47 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

3a√30

3a√6

a√15

Câu 48 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu

A. 400π

3

125π√3

250π√3

500π√3

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp

xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0

A (x − 1)2+ (y − 2)2+ (z − 4)2 = 2 B (x − 1)2+ (y − 2)2+ (z − 4)2= 3

C (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y + 2)2+ (z − 4)2= 1

Câu 50 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Trang 5

HẾT

Ngày đăng: 11/04/2023, 07:40

TỪ KHÓA LIÊN QUAN