TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Xác định phần ảo của số phức z = ( √ 2 + 3i)2 A 7 B −7 C −[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 2. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 3 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx
C.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
Câu 4. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
D.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 5. Khối đa diện đều loại {3; 5} có số mặt
Câu 6. [1] Giá trị của biểu thức 9log3 12bằng
Câu 7. Bát diện đều thuộc loại
Câu 8. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có f0(x)= F(x)
D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
Câu 9. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 5
a3√ 5
a3√ 5
6 .
Câu 10. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 11. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 12. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = e + 1 C T = 4 + 2
e. D T = e + 3
Trang 2Câu 13. Tính lim n −1
n2+ 2
Câu 14. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 15. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).
Câu 16. Khối đa diện đều loại {3; 4} có số cạnh
Câu 17. [2] Cho hàm số f (x)= x ln2
x Giá trị f0(e) bằng
e.
Câu 18. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 19. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 20. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 21. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
Câu 22. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 23. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
A. 3
9
Câu 24. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 25. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 26. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
√ 3
Câu 27. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên (n − 1) lần C Không thay đổi D Tăng lên n lần.
Câu 28. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Trang 3Câu 29. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
3√ 3
a3
√ 3
a3
√ 2
2 .
Câu 30. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 31. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 32. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 33. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 34. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 35. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
√
3, 38 C 2, 4, 8 D 8, 16, 32.
Câu 36. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
a3√3
a3
3
Câu 37. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = x + ln x C y0 = ln x − 1 D y0 = 1 + ln x
Câu 38. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 39. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A.
√
√ 3
Câu 40. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 2
Câu 41. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B Số cạnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Trang 4Câu 42. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
√
√ 6
6 .
Câu 43. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= −1+ i
√ 3
√ 3
2 . D P= 2
Câu 44. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 45. [1] Tập xác định của hàm số y= 2x−1
là
A. D = R \ {0} B. D = R C. D = (0; +∞) D. D = R \ {1}
Câu 46. Khối lập phương thuộc loại
Câu 47. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
3a√38
a√38
3a√58
29 .
Câu 48. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 1
0 = 2x ln x D y0 = 1
2x ln x.
Câu 49 Hình nào trong các hình sau đây không là khối đa diện?
Câu 50. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
2.
Câu 51. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√
Câu 52. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = log√
4 x
C y = log1 x D y = logaxtrong đó a= √3 − 2
Câu 53. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 54. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 55. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số mặt của khối chóp bằng số cạnh của khối chóp.
C Số đỉnh của khối chóp bằng 2n+ 1
D Số cạnh của khối chóp bằng 2n.
Trang 5Câu 56. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 57. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 58. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 59. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 6
a3
√ 6
a3
√ 6
24 .
Câu 60. [1] Tính lim1 − 2n
3n+ 1 bằng?
A −2
2
1
Câu 61. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B.
1
0 = 1
0 = ln 10
x .
Câu 62. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
Câu 63. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 64. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 65. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 66. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 67. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
40
50.(3)10
20
50.(3)20
20
50.(3)30
10
50.(3)40
450
Câu 68. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Trang 6Câu 69. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin x+ 2cos x
lần lượt là
A 2
√
2 và 3 B 2 và 2
√
√
2 và 3 D 2 và 3.
Câu 70. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 71 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z k f(x)dx= kZ f(x)dx, k là hằng số
C.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
Câu 72. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
2.
Câu 73. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
2016
2017
2018.
Câu 74. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 75. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 76. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
2
a3√ 3
a3√ 3
a3√ 6
48 .
Câu 77. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 78. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1.
Câu 79. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng −∞;1
3
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 80. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 81 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
Trang 7(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
Câu 82. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 83. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 84. [1] Biết log6 √a= 2 thì log6abằng
Câu 85. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 86. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 87. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
− 1
Câu 88. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 89. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 90 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 22 triệu đồng.
Câu 91. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 92 Phát biểu nào sau đây là sai?
A lim √1
nk = 0 với k > 1
Câu 93. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Trang 8Câu 94 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D.
Z
f(x)dx
!0
= f (x)
Câu 95. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 96. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là −
√ 3
Câu 97. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
√
√
√ 2
4 .
Câu 98. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 99. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a
√ 2
√
√ 3
Câu 100. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối lập phương C Khối bát diện đều D Khối tứ diện đều.
Câu 101. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
1
1
8.
Câu 102. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 103. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Câu 104. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 105. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
11a2
a2√ 2
a2√ 5
16 .
Câu 106. Tìm giới hạn lim2n+ 1
n+ 1
Trang 9Câu 107. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 108. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 109. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A. 1
1
1
Câu 110. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 111. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. ab
a2+ b2 C. √ ab
2√a2+ b2
Câu 112. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
2 .
Câu 113. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1728
23
68.
Câu 114. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
1
√
n+ 1
1
n.
Câu 115. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 116. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
9.
Câu 117. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 118. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 119. Khối đa diện đều loại {3; 5} có số cạnh
Câu 120. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
2 .
Câu 121. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2
và y= x
9
Trang 10Câu 122. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A − 1
1
Câu 123. Khối đa diện đều loại {5; 3} có số cạnh
Câu 124. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = S h B V = 1
2S h. C V = 1
3S h. D V = 3S h
Câu 125. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 126. Tính lim 2n
2− 1 3n6+ n4
A. 2
Câu 127. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 128. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 3
6 .
Câu 129. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 130. Hàm số y= −x3+ 3x2
− 1 đồng biến trên khoảng nào dưới đây?
HẾT