1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 5 (4)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 5 (4)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề thi
Định dạng
Số trang 13
Dung lượng 156,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho z1, z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 2. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 3. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 4. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

20

50.(3)30

40

50.(3)10

10

50.(3)40

20

50.(3)20

450

Câu 5. Tính lim

x→1

x3− 1

x −1

Câu 6. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 7. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Hai hình chóp tứ giác.

D Hai hình chóp tam giác.

Câu 8. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 9. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

2.

Câu 10. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 11. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 12. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 13. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Trang 2

Câu 14. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y+ 2

2 = z −3

x

2 = y −2

3 = z −3

−1 .

C. x

1 = y

1 = z −1

x −2

2 = y −2

3 = z −3

4 .

Câu 15. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 16. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 17. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 3

9

Câu 18. Khối đa diện đều loại {5; 3} có số mặt

Câu 19. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 20. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 21. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 9

11 − 19

9 . D Pmin= 2

11 − 3

Câu 22. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1728

1637

23

1079

4913.

Câu 23. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 24. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 25. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 26. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Trang 3

Câu 27. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 28. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 29. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

2 và 3 C 2 và 2

2 và 3

Câu 30. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1

Câu 31. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 1

8

1

8

9.

Câu 32. Bát diện đều thuộc loại

Câu 33. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (I) đúng B Cả hai câu trên sai C Cả hai câu trên đúng D Chỉ có (II) đúng.

Câu 34. Khối đa diện đều loại {3; 3} có số mặt

Câu 35. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = R \ {1} C. D = (−∞; 1) D. D = R

Câu 36. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 37. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 1008 B T = 2016 C T = 2017 D T = 2016

2017.

Câu 38 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B.

Z

f(x)dx

!0

= f (x)

C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 39. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

3√ 5

a3√15

a3√6

3 .

Trang 4

Câu 40. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 + ln x B y0 = x + ln x C y0 = ln x − 1 D y0 = 1 − ln x

Câu 41. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 42. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 4035

2016

2017

2018.

Câu 43. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 1

2x ln x. C y

0 = 2x ln 2 D y0 = 2x ln x

Câu 44. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

a

√ 2

3 .

Câu 45. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Không thay đổi B Tăng lên (n − 1) lần C Giảm đi n lần D Tăng lên n lần.

Câu 46. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 47. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều đúng B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai đều sai.

Câu 48. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3√3

a3√2

12 .

Câu 49. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 50. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 51. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

12 .

Trang 5

Câu 52. [4-1214h] Cho khối lăng trụ ABC.A BC , khoảng cách từ C đến đường thẳng BB bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

√ 3

Câu 53. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 54. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 55. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

a3

√ 6

a3

√ 2

16 .

Câu 56. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 57. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

√ 17

Câu 58. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2i B P= −1+ i

√ 3

√ 3

Câu 59. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 60. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

√ 6

a

√ 6

a

√ 6

3 .

Câu 61. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 62. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 63. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

6

2a3√ 6

a3√ 3

a3√ 3

2 .

Câu 64. Khối đa diện đều loại {5; 3} có số đỉnh

Trang 6

Câu 65. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3

a3√ 3

8 .

Câu 66. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

a3√ 3

4a3√ 3

8a3√ 3

3 .

Câu 67. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 68. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 69. [2] Tổng các nghiệm của phương trình 3x−1.2x 2

= 8.4x−2là

Câu 70. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = (0; +∞) C. D = R D. D = R \ {1}

Câu 71 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α B aα+β= aα.aβ C. a

α

aβ = aα D aαβ = (aα)β

Câu 72. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 73. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

√ 57

a√57

17 .

Câu 74. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x − 3)2+ (y − 1)2+ (z − 3)2= 9

4. B (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4.

C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

2+ (y + 1)2+ (z + 3)2= 9

4.

Câu 75. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 76 Hình nào trong các hình sau đây không là khối đa diện?

Câu 77. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 78. [2-c] Giá trị nhỏ nhất của hàm số y = (x2

− 2)e2xtrên đoạn [−1; 2] là

Trang 7

Câu 79. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Câu 80. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 81. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 82 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

D.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 83. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 6

6 . B V = πa3

√ 3

6 . C V = πa3

√ 3

2 . D V = πa3

√ 3

3 .

Câu 84. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 85. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 9

1

2

1

5.

Câu 86. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

C.

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

D.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

Câu 87. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x −2

2x+ 1. C y= x3− 3x. D y= x4− 2x+ 1.

Câu 88. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 89. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 90. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Trang 8

Câu 91. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

2

Câu 92. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 93. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 11

9

Câu 94. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 95. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. 1

2;+∞

!

2

!

2;+∞

!

2

!

Câu 96. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số cạnh của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 97. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

Câu 98. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 99. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 100. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

a2√2

11a2

a2√5

16 .

Câu 101 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 102. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Trang 9

Câu 103. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3√

3 B V = a3

√ 3

2 . C V = 6a3 D V = 3a3

√ 3

2 .

Câu 104. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (2; 1; 6) C ~u= (3; 4; −4) D ~u= (2; 2; −1)

Câu 105 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 106. Tìm m để hàm số y= x4

− 2(m+ 1)x2

− 3 có 3 cực trị

Câu 107. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 108. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 109. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 110. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x là

Câu 111. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 112. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

Câu 113. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

3√

3√ 3

3 .

Câu 114. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

7

2.

Câu 115. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 116. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Trang 10

Câu 117. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.

Câu 118. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 119. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = √4

Câu 120. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 121. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 122. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối lập phương B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 123. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 124. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 125. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

Câu 126 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 127. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Câu 128. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

3

a3

a3

12.

Câu 129. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Ngày đăng: 10/04/2023, 22:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w