TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phát biểu nào trong các phát biểu sau là đúng? A Nếu hàm s[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
Câu 2. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD= 2a, AB = a Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 4a
3
2a3√ 3
2a3
4a3√ 3
3 .
Câu 3. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 4. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
A m < 0 ∨ m = 4 B m < 0 C m < 0 ∨ m > 4 D m ≤ 0.
Câu 5. Cho I =Z 3
0
x
4+ 2√x+ 1dx =
a
d+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị
P= a + b + c + d bằng?
Câu 6. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 7. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
(1, 12)3− 1 triệu.
C m = 100.(1, 01)3
(1, 01)3− 1 triệu.
Câu 8. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 9. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C lim un= 1
Câu 10. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 11. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
Trang 2A. a
2a
8a
5a
9 .
Câu 12. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 20, 128 triệu đồng B 3, 5 triệu đồng C 50, 7 triệu đồng D 70, 128 triệu đồng.
Câu 13. Tính limcos n+ sin n
n2+ 1
Câu 14. Thể tích của khối lập phương có cạnh bằng a
√ 2
A. 2a
3√
2
√ 2
Câu 15. Cho hàm số y= −x3+ 3x2
− 4 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0;+∞)
C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 16. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
a3
2a3√ 3
4a3√ 3
3 .
Câu 17. Bát diện đều thuộc loại
Câu 18. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối lập phương D Khối bát diện đều.
Câu 19. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
26 .
Câu 20. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 21. Khối đa diện đều loại {4; 3} có số cạnh
Câu 22. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
4.
Câu 23. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 10 B f0(0)= 1
ln 10. C f
0 (0)= 1 D f0(0)= ln 10
Câu 24 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C.
Z
f(x)dx
!0
= f (x)
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 3Câu 25. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 26. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. a
√
57
2a√57
√
√ 57
19 .
Câu 27 Phát biểu nào sau đây là sai?
A lim 1
n = 0
Câu 28. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
3.
Câu 29. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 30. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 31. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 32. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
2a
a
√ 2
a
4.
Câu 33. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
Câu 34. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 35. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 36 Hình nào trong các hình sau đây không là khối đa diện?
Câu 37. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
a3√ 3
a3√ 3
3
Câu 38. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (0; 1).
Trang 4Câu 39. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 40. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 9
√
11+ 19
9 . C Pmin = 9
√
11 − 19
9 . D Pmin= 18
√
11 − 29
21 .
Câu 41. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 42. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 43. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4e+ 2. C m=
1+ 2e
4 − 2e. D m= 1 − 2e
4e+ 2.
Câu 44. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 45. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 46. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 1
2
9
1
10.
Câu 47. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 48. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 49. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 50. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 51. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 52. Khối đa diện đều loại {3; 5} có số mặt
Câu 53. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
a2√ 7
11a2
a2√ 5
16 .
Câu 54. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Trang 5Câu 55. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3√
3 B V = 6a3 C V = a3
√ 3
2 . D V = 3a3
√ 3
2 .
Câu 56. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 4 ln 2x
2x3ln 10 . D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 57. [1] Giá trị của biểu thức 9log3 12bằng
Câu 58. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 59. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Câu 60. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016 B T = 2016
2017. C T = 1008 D T = 2017
Câu 61. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 62. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là 3, phần ảo là 4.
C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là −4.
Câu 63. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 64. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
2
3.
Câu 65. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 66. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 67. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 3S h B V = 1
3S h.
Câu 68. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 69. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Trang 6Câu 70. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog a 5
bằng
√ 5
Câu 71. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 72. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 73. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x 3 −3mx 2 +m
nghịch biến trên khoảng (−∞;+∞)
Câu 74. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 75. Khối đa diện đều loại {5; 3} có số mặt
Câu 76. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
8a3√ 3
4a3√ 3
8a3√ 3
9 .
Câu 77. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
A m < 0 ∨ m > 4 B m ≤ 0 C m < 0 ∨ m= 4 D m < 0.
Câu 78. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
40
50.(3)10
20
50.(3)20
20
50.(3)30
10
50.(3)40
450
Câu 79. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 80. Hàm số nào sau đây không có cực trị
A y = x4− 2x+ 1 B y= x +1
x. C y= x −2
2x+ 1. D y= x3− 3x.
Câu 81. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2;+∞
!
2
!
2
!
Câu 82. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
6 .
Câu 83. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Trang 7Câu 84. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
! là
Câu 85. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= −1 − i
√ 3
√ 3
Câu 86. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a + f(x)= lim
x→a − f(x)= +∞
C lim
x→af(x)= f (a) D f (x) có giới hạn hữu hạn khi x → a.
Câu 87. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
B.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
Câu 88. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối 20 mặt đều D Khối tứ diện đều.
Câu 89. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2+ 2; m = 1 B M = e−2− 2; m= 1
C M = e2− 2; m = e−2+ 2 D M = e−2+ 1; m = 1
Câu 90. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 4 đỉnh, 6 cạnh, 4 mặt.
Câu 91 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx B.
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z
f(x)g(x)dx=
Z
f(x)dx
Z g(x)dx
Câu 92. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 93. Khối đa diện đều loại {5; 3} có số cạnh
Câu 94. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
3
24.
Câu 95. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
1
3.
Câu 96. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Trang 8Câu 97. [2-c] Cho hàm số f (x) = 9
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
2.
Câu 98. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 99. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 100. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A −1
1
4.
Câu 101. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
√ 3
Câu 102. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
√
38
3a√58
3a
a√38
29 .
Câu 103. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 104. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 105. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√
Câu 106. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1
Câu 107. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 20 mặt đều B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.
Câu 108. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 109. Khối đa diện đều loại {4; 3} có số mặt
Câu 110. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 111. Khối đa diện đều loại {3; 3} có số cạnh
Câu 112. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
Trang 9A ~u = (3; 4; −4) B ~u= (2; 2; −1) C ~u= (2; 1; 6) D ~u= (1; 0; 2).
Câu 113. [1] Giá trị của biểu thức log 1
3
√ 10 bằng
A −1
1
Câu 114. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3√ 3
a3
a3√ 3
2 .
Câu 115. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
8
1
1
3.
Câu 116. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 117. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 118. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 119. Dãy số nào sau đây có giới hạn là 0?
A un= 1 − 2n
5n+ n2 B un = n2− 2
5n − 3n2 C un = n2+ n + 1
(n+ 1)2 D un = n2− 3n
n2
Câu 120. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 121. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
√
√
√ 2
2 .
Câu 122. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 123. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
2.
Câu 124. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 125. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A. 1
1
1
3.
Câu 126. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Trang 10Câu 127. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
√
√ 2
Câu 128. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 3
a
√ 6
a
√ 6
3 .
Câu 129. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
A. 2
Câu 130. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
HẾT