TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đ[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= 1
loga2. C log2a= loga2 D log2a= 1
log2a.
Câu 2. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Câu 3. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 4. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 5. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
16 .
Câu 6 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
Câu 7. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 6
a3√ 2
6 .
Câu 8. Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 9. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 10. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 11. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x) − g(x)]= a − b B lim
x→ +∞[ f (x)+ g(x)] = a + b
C lim
x→ +∞
f(x)
g(x) = a
Trang 2Câu 12. [3] Cho hàm số f (x)= 4
4x+ 2 Tính tổng T = f
1
2017 + f 2
2017 + · · · + f 2016
2017
A T = 2016 B T = 2016
2017. C T = 2017 D T = 1008
Câu 13. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 14. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2 − 1, phần ảo là −
√ 3
Câu 15. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 16. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 17. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 18. Dãy số nào sau đây có giới hạn khác 0?
A. 1
n+ 1
sin n
1
√
n.
Câu 19. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.
C Phần thực là 3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.
Câu 20. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 34
Câu 21. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 22. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; 3; 1) B A0(−3; −3; −3) C A0(−3; −3; 3) D A0(−3; 3; 3)
Câu 23. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 3
6 . C V = πa3
√ 3
3 . D V = πa3
√ 6
6 .
Câu 24. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
C Dãy số unkhông có giới hạn khi n →+∞ D lim un= 1
2.
Câu 25. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Trang 3Câu 26. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 2
√
11 − 3
3 . C Pmin = 18
√
11 − 29
21 D Pmin= 9
√
11+ 19
Câu 27. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 28. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 29. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
√ 3
Câu 30. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 31. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
− 2; m= 1
C M = e−2+ 2; m = 1 D M = e2− 2; m = e−2+ 2
Câu 32. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 33. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 34. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 35. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (1; +∞) B. D = R \ {1} C. D = (−∞; 1) D. D = R
Câu 36. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 37. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 38. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 39. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 40. [1] Tập xác định của hàm số y= 2x−1là
A. D = (0; +∞) B. D = R \ {0} C. D = R \ {1} D. D = R
Câu 41. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
Trang 4(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A Chỉ có (I) đúng B Cả hai câu trên đúng C Chỉ có (II) đúng D Cả hai câu trên sai.
Câu 42. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3 ] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 43. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 44. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√2
a3√3
2√ 2
Câu 45. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
1
e2
Câu 46. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 47. Hàm số nào sau đây không có cực trị
A y = x +1
x. B y= x3− 3x C y= x −2
2x+ 1. D y= x4− 2x+ 1.
Câu 48 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aα+β= aα.aβ B aαβ = (aα
)β C. a
α
aβ = aα D aαbα = (ab)α
Câu 49. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 50. Cho hàm số y= 3 sin x − 4 sin3
x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 51. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 52. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 53. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 54. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. ab
2√a2+ b2 D. √ ab
a2+ b2
Câu 55 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
Trang 5(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 56. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
a3
4a3√ 3
3 .
Câu 57. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 58. Khối đa diện đều loại {3; 3} có số mặt
Câu 59. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 60. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 61. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 62. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 63. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
C.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 64. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
"
2;5 2
! C. " 5
2; 3
!
Câu 65. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 66. Khối đa diện đều loại {3; 4} có số mặt
Câu 67. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Trang 6Câu 68. [2-c] Giá trị lớn nhất của hàm số y = xe−2x
trên đoạn [1; 2] là
A. 1
2√e.
Câu 69. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
3
Câu 70. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 71. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 72. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 73. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 74 Hình nào trong các hình sau đây không là khối đa diện?
Câu 75. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 9 lần B Tăng gấp 3 lần C Tăng gấp 27 lần D Tăng gấp 18 lần.
Câu 76. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 1
0 = 1
2x ln x. C y
0 = 2x ln x D y0 = 2x ln 2
Câu 77. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
13 .
Câu 78. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 79. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 80. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 81. Khối đa diện đều loại {5; 3} có số đỉnh
Trang 7Câu 82. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 83. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√
Câu 84 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D.
Z
u0(x)
u(x)dx= log |u(x)| + C
Câu 85. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 86. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số nghịch biến trên khoảng (−2; 1).
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 87. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→af(x)= f (a)
C f (x) có giới hạn hữu hạn khi x → a D lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 88. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
3√ 3
2a3√ 3
a3
√ 3
6 .
Câu 89. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 90. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = [2; 1] B. D = R \ {1; 2} C. D = R D. D = (−2; 1)
Câu 91. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a
√ 6
3 .
Câu 92. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 93. [2] Đạo hàm của hàm số y = x ln x là
A y0 = ln x − 1 B y0 = 1 − ln x C y0 = x + ln x D y0 = 1 + ln x
Câu 94. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a√2
√
√ 2
Câu 95. Khối đa diện đều loại {4; 3} có số cạnh
Trang 8Câu 96. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 97. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 98. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Hai hình chóp tứ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 99. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x
lần lượt là
A 2
√
√
√ 2
Câu 100. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√ 6
2 .
Câu 101. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 102. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4.
Câu 103. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
A 3 − 4
√
√ 2
Câu 104. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 105. Cho hai đường thẳng d và d0cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 106. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
18.
Câu 107. Tính lim
x→1
x3− 1
x −1
Trang 9Câu 108. [2] Tổng các nghiệm của phương trình 2x +2x = 82−x
là
Câu 109. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
2.
Câu 110. Khối đa diện đều loại {3; 3} có số cạnh
Câu 111 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D Cả ba đáp án trên.
Câu 112. Tính limcos n+ sin n
n2+ 1
Câu 113. [4-1213d] Cho hai hàm số y= x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y= |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 114. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√6
a√3
2 .
Câu 115. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 116. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1
Câu 117. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 118. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 119. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1+ 2e 4e+ 2.
Câu 120. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 2
√
√ 2
Câu 121. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2)= m có nghiệm thực
x ≥1
Câu 122. Khối đa diện đều loại {3; 4} có số cạnh
Câu 123. Biểu thức nào sau đây không có nghĩa
Trang 10Câu 124. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 125. [2D1-3] Cho hàm số y = −1
3x
3+mx2+(3m+2)x+1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 ≤ m ≤ −1 B (−∞; −2) ∪ (−1; +∞) C (−∞; −2]∪[−1; +∞) D −2 < m < −1.
Câu 126. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
A. 2017
4035
2016
2017.
Câu 127. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ (a; b), ta có f0(x)= F(x)
C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 128. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 129. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 130. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
6
a3√3
2a3√6
a3√3
4 .
HẾT