1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (846)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 123,1 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có 3 điểm cực trị A y = −x4 − 2x2 − 1 B y = x4 + 2x2 −[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây có 3 điểm cực trị:

A y= −x4− 2x2− 1 B y= x4+ 2x2− 1 C y= 2x4+ 4x2+ 1 D y= x4− 2x2− 1

Câu 2 Đồ thị của hàm số y= x −

x+ 2

x2− 4 có tất cả bao nhiêu tiệm cận?

Câu 3 Một sinh viên A trong thời gian 4 năm học đại học đã vay ngân hàng mỗi năm 10 triệu đồng với

lãi suất 3

A 43.091.358 đồng B 46.538667 đồng C 45.188.656 đồng D 48.621.980 đồng Câu 4 Biết logab= 2, logac= 3 với a, b, c > 0; a , 1 Khi đó giá trị của loga(a

2√3

b

c ) bằng

A −1

2

Câu 5 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình

hành

A (1; 1; 3) B (1; −1; 1) C (−1; 1; 1) D (1; −2; −3).

Câu 6 Tập xác định của hàm số y= logπ(3x− 3) là:

Câu 7 Cho hình chóp tứ giác S ABCD có đáy là hình vuông cạnh bằng a√2, tam giác S AB vuông cân tại S và mặt phẳng (S AB) vuông góc với mặt phẳng đáy Khoảng cách từ A đến mặt phẳng (S CD) là

A. a

2

a√10

a√6

√ 2

Câu 8 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường

y= 1

x, x= 1, x = 2 và trục hoành

A V = π

2 .

Câu 9 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 10 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 11 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng

Câu 12 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 13 Tính đạo hàm của hàm số y= 2023x

A y′= x.2023x−1 B y′ = 2023x

ln x D y′ = 2023x

ln 2023

Câu 14 Số phức z= 2 − 3i có phần ảo là

Trang 2

Câu 15 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A m > 1 B m < −1 C −1 ≤ m < 0 D −1 ≤ m ≤ 0.

Câu 16 Thể tích khối lập phương có cạnh 3a là:

Câu 17 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 18 Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x)= m có ba nghiệm thực phân biệt?

Câu 19 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 20 Tiệm cận ngang của đồ thị hàm số y= 2x +1

3x−1 là đường thẳng có phương trình:

A y= −1

3 C y= −2

3

Câu 21 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2

2 = y−1

2 = z−1

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

3

Câu 22 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n2 = (1; −1; 1) B.→−n4 = (1; 1; −1) C.→−n1 = (−1; 1; 1) D.→−n3 = (1; 1; 1)

Câu 23 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 24 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 25 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Câu 26 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 1

3πrl2

Câu 27 NếuR4

−1 f(x)= 2 và R−14 g(x)= 3 thì R−14[ f (x)+ g(x)] bằng

Câu 28 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′

(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng

A. 1

1

4

5

2.

Câu 29 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên)

Thể tích khối chóp đã cho bằng

Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 31 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Trang 3

Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 33 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2 z

Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 34 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc nhau và OA= OB = OC = 1 Tính thể tích V của khối tứ diện OABC

A V = 1

Câu 35 Trong các mệnh đề sau, mệnh đề nào đúng?

A Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau.

B Hai khối chóp có thể tích bằng nhau thì bằng nhau.

C Hai khối lăng trụ bằng nhau thì thể tích bằng nhau.

D Hai khối chóp có diện tích đáy bằng nhau thì thể tích bằng nhau.

Câu 36 Trong các hình dưới đây, có bao nhiêu hình đa diện?

Câu 37 Cho hàm số y= x+ 1

x −1 có đồ thị là (C) và đường thẳng d có phương trình y= 5 − x Tìm số giao điểm của (C) và d

Câu 38 Cho hàm số y= f (x) có bảng biến thiên như sau:

x

y′ y

−2

−∞

+∞

−2

Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

Câu 39 Cho hàm số y= x+ 1

3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].

Câu 40 Tìm giá trị nhỏ nhất của hàm số f (x)= 2x3− 3x2− 12x+ 10 trên đoạn [−3; 3]

Câu 41 Cho hàm số y= −x4− x2+ 1 Trong các khẳng định sau, khẳng định nào sai?

A Đồ thị hàm số có một điểm cực đại B Điểm cực tiểu của hàm số là (0; 1).

C Đồ thị hàm số không có tiệm cận D Đồ thị hàm số cắt trục tung tại điểm (0; 1).

Trang 4

Câu 42 Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?

x

y′ y

2

+∞

−∞

2

A y= 2x+ 3

2x+ 1

x −1 .

Câu 43 Cho hình lăng trụ đứng ABCD.A

B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

5

1

√ 3

√ 3

2 .

Câu 44 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 3mn+ n + 4

C log22250= 2mn+ 2n + 3

Câu 45 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R

2

|x2− 2x|dx

B.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R

2 (x2− 2x)dx

D.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 46 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − sin 3x)5x +cos3xln 5. B y′ = (1 + 3 sin 3x)5x +cos3xln 5.

C y′ = (1 − 3 sin 3x)5x +cos3xln 5. D y′ = 5x +cos3xln 5.

Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

6.

Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(4

3;

10

3 ;

16

7

3;

10

3 ;

31

5

3;

11

3 ;

17

2

3;

7

3; 21

3 ).

Trang 5

HẾT

Ngày đăng: 10/04/2023, 15:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm