1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (902)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 124,04 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

4m2− 3

m2− 12

m2− 3 2m .

Câu 2 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?

Câu 3 Tính nguyên hàmR cos 3xdx

A 3 sin 3x+ C B. 1

3sin 3x+ C

Câu 4 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

5

a√5

a√15

√ 15

Câu 5 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= −x4+ 1 B y= x4+ 1 C y= −x4+ 2x2+ 1 D y = x4+ 2x2+ 1

Câu 6 Tập nghiệm của bất phương trình log 1

2 (x − 1) ≥ 0 là:

Câu 7 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

B Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

C Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

D Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

Câu 8 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2 + mx − 1nằm bên phải trục tung

A m < 1

3. B Không tồn tại m. C 0 < m <

1

3. D m < 0.

Câu 9 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 10 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 1+ x

−2x+ 3

x+ 2 .

Câu 11 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Trang 2

Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.

Phương trình của (S ) là

A (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40 B (x − 1)2+ (y − 4)2+ (z + 2)2= 10

C (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40 D (x − 1)2+ (y − 4)2+ (z + 2)2= 40

Câu 13 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 14 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là

A.→−n = (1; −2; 3) B.→−n = (1; 2; 3) C.→−n = (1; 3; −2) D.→−n = (1; −2; −1)

Câu 15 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

Câu 16 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (1; 4).

B Hàm số đã cho đồng biến trên khoảng (1; 4).

C Hàm số đã cho đồng biến trên khoảng (−∞; 3).

D Hàm số đã cho nghịch biến trên khoảng (3;+∞)

Câu 17 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực

mgần giá trị nào nhất trong các giá trị sau?

Câu 18 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của

số phức w= z2+ 2z bằng bao nhiêu?

A |w|= 5 B |w|= 5√13 C |w|= √37 D |w|= √13

Câu 19 Tổng nghịch đảo các nghiệm của phương trình z4− z3− 2z2+6z−4 = 0 trên tập số phức bằng

A −3

3

1

1

2.

Câu 20 Căn bậc hai của -4 trong tập số phức là.

A không tồn tại B 2i hoặc -2i C 4i D 2 hoặc -2.

Câu 21 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?

Câu 22 Tất cả các căn bậc hai của số phức z= 15 − 8i là:

A 4+ i và −4 + i B 5 − 2i và −5+ 2i C 4 − i và 2+ 3i D 4 − i và −4+ i

Câu 23 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Phương trình đã cho luôn có nghiệm.

B Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

C Phương trình đã cho có tổng hai nghiệm bằng −b

a .

D Phương trình đã cho có tích hai nghiệm bằng c

a.

Câu 24 Tìm tất cả các giá trị thực của tham số m để phương trình mz2+ 2mz − 3(m − 1) = 0 không có nghiệm thực là

A m ≥ 0 B 0 < m < 3

4. C m < 0 hoặc m >

3

4. D 0 ≤ m <

3

4.

Câu 25 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?

A z2− (5 − 2i)z+ 9 − 7i = 0 B z2− (1+ 4i)z + 9 − 7i = 0

C z2+ (5 − 2i)z − 9 + 7i = 0 D z2+ (1 + 4i)z − 9 + 7i = 0

Trang 3

Câu 26 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 27 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (−1; 2; 3) B (−1; −2; −3) C (1; 2; −3) D (1; −2; 3).

Câu 28 NếuR02 f(x)= 4 thì R2

0[1

2f(x) − 2] bằng

Câu 29 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

A. 1

Câu 30 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= −1

x2 B F′(x)= 2

x.

Câu 31 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (1; 2; 3) B (−2; −4; −6) C (2; 4; 6) D (−1; −2; −3).

Câu 32 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 33 Cho hàm số y = f (x) có đạo hàm f′(x)= (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 34 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 35 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 36 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1

z2 = 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

√ 2

1

√ 2

Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

2;

9 4

!

4;+∞

!

4;

5 4

!

Câu 39 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Trang 4

Câu 40 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min = 2 B |w|min = 1

2. C |w|min = 3

2. D |w|min= 1

Câu 41 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 .

Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P = (|z| − 4)2 B P =

|z|2− 42 C P= (|z| − 2)2 D P= 

|z|2− 22

Câu 43 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 1

209

8

1

210.

Câu 44 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

Câu 45 Cho hàm số y= f (x) có đạo hàm f′

(x)= x2

− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng

Câu 46 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 47 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:

A I(1; 2; 3); R= 3 B I(1; −2; 3); R = 3 C I(−1; 2; −3); R = 3 D I(1; 2; −3); R = 3.

Câu 48 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A m < −1 B −1 ≤ m ≤ 0 C m > 1 D −1 ≤ m < 0.

Câu 49 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= 27

5 + 6

5−

27

5 −

6

5 + 27

5 i.

Câu 50 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −

z

i= 0 Tính S = 2a + 3b

HẾT

Ngày đăng: 10/04/2023, 15:05

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN