Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′
A. a
3
a3
a3
a3
3.
Câu 2 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A ln 2 − 1
1
1
2.
Câu 3 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với
cạnh huyền bằng 2a Tính thể tích của khối nón
A. π.a3
4π√2.a3
2π.a3
π√2.a3
Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Câu 5 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 6
(3x − 1) ln 2. B y
(3x − 1) ln 2. C y
3x − 1
ln 2
3x − 1
ln 2
Câu 6 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x= 1 + 2ty = 2 + (m − 1)tz = 3 − t Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
Câu 8 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,
I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)
√ 5
a
√ 5
a
√ 15
Câu 9 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 10 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Câu 11 Cho hàm số y= f (x) có đồ thị của y = f′
(3 − 2x) như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (
x3+ 2021x
+ m)
có ít nhất 5 điểm cực trị?
Trang 2Câu 12 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 13 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y+ 3z − 1 = 0 Một véc tơ pháp tuyến của (P) là
A.→−n = (1; −2; 3) B.→−n = (1; −2; −1) C.→−n = (1; 2; 3) D.→−n = (1; 3; −2)
Câu 14 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e
2
R
1
f(ln x)
Câu 15 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 16 Tập nghiệm của bất phương trình 52x +3> −1 là
Câu 17 Gọi M, N là hai điểm biểu diễn các số phức là nghiệm của phương trình z2− 4z+ 29 = 0 Độ dài MN bằng bao nhiêu?
Câu 18 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 5 − 2i và −5+ 2i B 4+ i và −4 + i C 4 − i và −4+ i D 4 − i và 2+ 3i
Câu 19 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức
có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?
A |w|= √73 B |w|= √5 C |w|= 3√5 D |w|= 5
Câu 20 Biết z0 là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 20 = 0 Trên mặt phẳng tọa
độ, điểm nào dưới đây là điểm biểu diễn của số phức w= (1 + i)z0− 2z0 ?
Câu 21 Biết z= 1 + 2i là một nghiệm phức của phương trình z2+ (m − 1)z + m − 1 = 0 (m là tham số phức) Khi đó phần ảo của m bằng bao nhiêu?
A. 3
3
7
7
4.
Câu 22 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực
mgần giá trị nào nhất trong các giá trị sau?
Câu 23 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu
a − bbằng
Câu 24 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Câu 25 Căn bậc hai của -4 trong tập số phức là.
Câu 26 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Trang 3Câu 27 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= lnx B F′(x)= 1
x2 D F′(x)= 2
x2
Câu 28 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và
y= 0 quanh trục Ox bằng
A. 16
16π
16
16π
15 .
Câu 29 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4= (1; 1; −1) B.→−n2 = (1; −1; 1) C.→−n1 = (−1; 1; 1) D.→−n3 = (1; 1; 1)
Câu 30 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng
Câu 31 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao
cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?
Câu 33 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; −2; 3) B (1; 2; −3) C (−1; 2; 3) D (−1; −2; −3).
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 22 B P=
|z|2− 42 C P = (|z| − 2)2 D P = (|z| − 4)2
Câu 35 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 36 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 37 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
2.
Câu 38 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A. 3
2 ≤ |z| ≤ 2. B |z| <
1
1
2 < |z| < 3
2.
Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2√13 B T = 4√13 C T = 2
√ 85
√ 97
Câu 40 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
A z là một số thực không dương B Phần thực của z là số âm.
Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Trang 4Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 42 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; 6; −4) B M(−2; −6; 4) C M(2; −6; 4) D M(5; 5; 0).
Câu 44 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 45 Cho hàm số y= f (x) có bảng biến thiên như sau :
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 46 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m ≤ −3 B −4 < m < −3 C m > −4 D −4 ≤ m < −3.
Câu 47 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x+ 4)2+ (y − 8)2 = 2√5 B (x − 4)2+ (y + 8)2 = 20
C (x+ 4)2+ (y − 8)2 = 20 D (x − 4)2+ (y + 8)2 = 2√5
Câu 48 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= 1 và x = −1 B y= 2 và x = 1 C y= 1 và x = 2 D y= −1 và x = 2
Câu 49 Tính đạo hàm của hàm số y= 2023x
A y′ = x.2023x−1 B y′ = 2023x
ln x C y′ = 2023x
ln 2023
Câu 50 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 27
5 + 6
5+ 27
5−
27
5 −
6
5i.
HẾT