1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (774)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 127,34 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp ABCD A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuôn[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình hộp ABCD.A′B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′

A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′

D′theo a

Câu 2 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a

2 q

b2− √3a2

√ 3b2− a2

C VS.ABC =

√ 3a2b

√ 3ab2

12 .

Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2e B m > 2 C m ≥ e−2 D m > e2

Câu 4 Cho số thực dươngm Tính I = Rm

0

dx

x2+ 3x + 2 theo m?

A I = ln(m+ 1

m+ 2). B I = ln(

2m+ 2

m+ 2 ). C I = ln(

m+ 2 2m+ 2). D I = ln(

m+ 2

m+ 1).

Câu 5 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (0; 2; 0) B (0; 6; 0) C (0; −2; 0) D (−2; 0; 0).

Câu 6 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A ea> eb B a−√3 < b−√3 C a

2> b√2 D. √5

a< √5

b

Câu 7 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 8 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A ad > 0 B bc > 0 C ac < 0 D ab < 0

Câu 9 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2

−2 = z+ 2

1 và d2 :

x −4

3 = z+ 2

−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách

từ điểm M(1; 1; 1) đến (P) bằng

3

2

3√10.

Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P= 1

14.

Câu 11 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn

phương án dưới đây Hỏi hàm số đó là hàm số nào?

Câu 12 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?

A (3, 3; 3, 5)· B (3, 5; 3, 7)· C (3, 1; 3, 3)· D (3, 7; 3, 9)·.

Trang 2

Câu 13 Cho số phức zthỏa mãn

z

i+ 2 = 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)

Câu 14 Cho hàm số y= f (x) có đồ thị của y = f′(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 15 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 16 Tính đạo hàm của hàm số y= 5x

ln 5.

Câu 17 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 18 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 19 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là

A m ≥ 1 hoặc m ≤ 0 B −1 ≤ m ≤ 0 C 0 ≤ m ≤ 1 D m ≥ 0 hoặc m ≤ −1 Câu 20 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 21 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 22 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 23 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z. D z là số thuần ảo.

Câu 24 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 25 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 26 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

Trang 3

B. R

b f(x)= F(b) − F(a)

C.Rabk · f(x)= k[F(b) − F(a)]

D.Rb

a f(2x+ 3) = F(2x + 3)

b

a

Câu 27 Mệnh đề nào sau đây sai?

A.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R

B. R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

C.R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

D.R( f (x) − g(x)) = R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

Câu 28 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng

A F

(x)+ C = f (x) B F(x)= f′

(x)= f (x) D F(x)= f′

(x)+ C

Câu 29 Giá trị củaR−10 ex +1dxbằng

Câu 30 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số

A f (x)= −2023cos(2023x) B f (x)= − 1

2023cos(2023x).

C f (x)= cos(2023x) D f (x)= 2023cos(2023x)

Câu 31 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A 2x + y − z − 4 = 0 B −2x + y − z + 4 = 0 C −2x + y − z + 1 = 0 D −2x + y − z − 4 = 0.

Câu 32 Nguyên hàmR 1+ lnx

x dx(x > 0) bằng

A x+ ln2x+ C B x+ 1

2ln

2x+ C C ln2x+ lnx + C D. 1

2ln

2x+ lnx + C

Câu 33 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng

qua I, song song với mặt phẳng (ABC) có phương trình là:

Câu 34 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

Câu 35 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3.

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 1 D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2

Câu 36 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 3

2 < |z| < 2 B. 5

2 < |z| < 7

2. C 2 < |z| <

5

1

2 < |z| < 3

2.

Câu 37 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

1

√ 2

3 .

Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Trang 4

Câu 39 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 40 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M= |z + 1 − i| là

Câu 41 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A. 3

1

2 < |z| < 3

2. C |z| <

1

2. D |z| > 2.

Câu 42 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1 + 1 z2 = 1

z1+ z2 Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. √1

√ 2

2 .

Câu 43 Cho tứ diện DABC, tam giácABC là vuông tại B, DA vuông góc với mặt phẳng (ABC) Biết

AB= 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính bằng

A. 5a

3

5a

√ 2

5a√3

5a

√ 2

Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Câu 45 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α

A.

5

√ 3

1

√ 3

4 .

Câu 46 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 17

πa2√ 15

πa2√ 17

Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm

A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 7 = 0 B 2x+ y − 4z + 5 = 0

C 2x+ y − 4z + 1 = 0 D −2x − y+ 4z − 8 = 0

Câu 48 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

A P = 2a +2b+3c. B P = 26abc C P= 2a +b+c. D P= 2abc

Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình

x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0

Trang 5

HẾT

Ngày đăng: 10/04/2023, 13:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN