Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hàm số nào sau đây đồng biến trên R? A y = x4 + 3x2 + 2 B y = tan x C y[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Hàm số nào sau đây đồng biến trên R?
Câu 2 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A a−
√
3< b−√3 B ea > eb
a< √5
√
2> b√2
Câu 3 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 4 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
3 .
Câu 5 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
C y= 3x+ 1
Câu 6 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(20; 15; 7) B C(8;21
Câu 8 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếu 0 < x < 1 thì y < −3 B Nếux > 2 thìy < −15.
C Nếux= 1 thì y = −3 D Nếu 0 < x < π thì y > 1 − 4π2
Câu 9 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng
Câu 10 Cho hàm số f (x) liên tục trên R và
2 R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 11 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng
Câu 12 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 512π
2 .
Câu 13 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) và N( 3; 2; −1) Đường thẳng
MN có phương trình tham số là
Trang 2Câu 14 Biết f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= 3 cos 3x B f (x)= −3 cos 3x C f (x)= −cos 3x
3 . D f (x)= cos 3x
Câu 15 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (8
3; −
2
3;
7
3). B (2 ; −3 ; 1). C (
10
2 ; −
4
3;
5
2
3; −
4
3;
5
3).
Câu 16 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x≥ log5(x+ y2)?
Câu 17 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
A z= 1
Câu 18 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z+ z = 2bi B z · z = a2− b2 C |z2|= |z|2 D z − z= 2a
Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= 5
√
34
√ 34
3 . D |z|= √34
Câu 20 Số phức z= 1+ i
1 − i
!2016 + 1 − i
1+ i
!2018 bằng
Câu 21 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)
1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là
Câu 22 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 23 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A −1 ≤ m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C m ≥ 1 hoặc m ≤ 0 D 0 ≤ m ≤ 1.
Câu 24 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 25 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 29
11
29
11
13.
Câu 26 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) và đi qua điểm M(1; 2; −2) có phương trình là
A (x+ 2)2+ y2+ z2= 3 B (x+ 2)2+ y2+ z2 = 9
C (x − 2)2+ y2+ z2= 9 D (x − 2)2+ y2+ z2 = 3
Câu 27 Biết
1 R
0
3x − 1
x2+ 6x + 9 dx = 3ln
a
b −
5
6, trong đó a, b nguyên dương và
a
b là phân số tối giản Hãy tính ab
Câu 28 Tính tích phân I = R2
1 xexdx
Câu 29 Cho hàm số f (x) liên tục trên R vàR04 f(x)= 10, R4
3 f(x)= 4 Tích phân R3
0 f(x) bằng
Trang 3Câu 30 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng.
A F(x)= f′
(x)+ C = f (x) D F(x)= f′
(x)+ C
Câu 31 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng
qua I, song song với mặt phẳng (ABC) có phương trình là:
Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) và tọa độ
trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là:
A C(1; 4; 4) B C(1; 0; 2) C C(−1; 0; −2) D C(−1; −4; 4).
Câu 33 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x)= −1
2cos2x. B F(x)= −cos2x C F(x) = sin2x D F(x)= −cos2x
Câu 34 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 35 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 7
√ 2
√ 2
√ 6
√ 5
5 .
Câu 36 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
Câu 37 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?
A |z| > 2 B |z| < 1
1
2 < |z| < 3
3
2 ≤ |z| ≤ 2.
Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 22 B P= (|z| − 4)2 C P =
|z|2− 42 D P = (|z| − 2)2
Câu 39 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 41 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 42 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
1
2.
Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 44 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx=R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
Trang 43
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
D.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
Câu 45 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Câu 46 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
Câu 47 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(5
3;
11
3 ;
17
7
3;
10
3 ;
31
2
3;
7
3;
21
4
3;
10
3 ;
16
3 ).
Câu 50 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = πRl + 2πR2 B St p = πRh + πR2 C St p = πRl + πR2 D St p = 2πRl + 2πR2
Trang 5HẾT