1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 1 (15)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 1 (15)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,91 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho ∫ 2 1 ln(x + 1) x2 dx = a ln 2 + b ln 3, (a, b ∈ Q) Tí[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 2. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 3n

n2 B un = n2− 2

5n − 3n2 C un = 1 − 2n

5n+ n2 D un = n2+ n + 1

(n+ 1)2

Câu 3. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 4. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 5. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 6. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

3

#

"

−2

3;+∞

!

5

# D. " 2

5;+∞

!

Câu 7. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 8. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Trục thực.

B Trục ảo.

C Đường phân giác góc phần tư thứ nhất.

D Hai đường phân giác y= x và y = −x của các góc tọa độ

Câu 9. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 10. Dãy số nào có giới hạn bằng 0?

A un= n2− 4n B un = −2

3

!n C un = n3− 3n

n+ 1 . D un = 6

5

!n

Câu 11. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 12. Tính lim

x→ +∞

x −2

x+ 3

Câu 13. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

Trang 2

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x).

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 14. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 15. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

2

a3

√ 3

a3

√ 3

a3

√ 3

6 .

Câu 16. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 17. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

4035

2016

2017.

Câu 18. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 19. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 20. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

1

8

8

3.

Câu 21. Tính limcos n+ sin n

n2+ 1

Câu 22. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 23. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 24. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 1; m = 1 B M = e−2− 2; m= 1

− 2; m = e−2+ 2

Câu 25. Khối đa diện đều loại {3; 5} có số cạnh

Trang 3

Câu 26 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx B.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

C.

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx D.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

Câu 27. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

4 .

Câu 28. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

1

1

4.

Câu 29. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 30. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1079

1728

1637

23

68.

Câu 31. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 32. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 33 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ

B aαbα = (ab)α

α

aβ = aα D aαβ = (aα

Câu 34. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 35. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 36. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 37. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −1

2;+∞

!

2;+∞

!

2

!

2

!

Câu 38. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 39. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 40. Hàm số y= x + 1

x có giá trị cực đại là

Câu 41. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

3

a3√3

2 .

Trang 4

Câu 42. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 43. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 44. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

3

Câu 45 Mệnh đề nào sau đây sai?

A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C.

Z

f(x)dx

!0

= f (x)

D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

Câu 46. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 47. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3

√ 3

2 . B V = 6a3 C V = a3

√ 3

2 . D V = 3a3√

3

Câu 48. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 6

a3

√ 2

6 .

Câu 49. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R \ {1; 2} B. D = [2; 1] C. D = (−2; 1) D. D = R

Câu 50. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. 4a

3√

3

a3

2a3√ 3

a3

6 .

Câu 51. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng 2n.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số mặt của khối chóp bằng 2n+1.

D Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 52. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 53. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 11

9

2.

Câu 54. Khối đa diện đều loại {4; 3} có số đỉnh

Trang 5

Câu 55. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3√ 3

3√ 3

9 .

Câu 56. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên đúng B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai câu trên sai.

Câu 57 Phát biểu nào sau đây là sai?

A lim √1

nk = 0 với k > 1

C lim qn= 1 với |q| > 1 D lim un= c (Với un = c là hằng số)

Câu 58. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Hai hình chóp tam giác.

D Hai hình chóp tứ giác.

Câu 59. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 60. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

ln 2

2 .

Câu 61. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 1

ln 10. C f

0 (0)= 10 D f0(0)= 1

Câu 62. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 63. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

2

2e3

Câu 64. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 65. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

a√2

√ 2

Trang 6

Câu 66. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

a

√ 6

√ 6

Câu 67 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 68. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) xác định trên K.

C f (x) có giá trị nhỏ nhất trên K D f (x) liên tục trên K.

Câu 69. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 70. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

Câu 71. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 72. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 73. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 74. Tứ diện đều thuộc loại

Câu 75. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 76. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là

Câu 77. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

loga2. B log2a= 1

log2a. C log2a= loga2 D log2a= − loga2

Câu 78. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Trang 7

Câu 79. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 80. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 81. Biểu thức nào sau đây không có nghĩa

Câu 82. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 83. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 84. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 85. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 86. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x) − g(x)]= a − b B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 87. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 3ac

3b+ 2ac

c+ 2 .

Câu 88. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 18 lần B Tăng gấp 9 lần C Tăng gấp 27 lần D Tăng gấp 3 lần.

Câu 89. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 90. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

Câu 91. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x −2

2 = y −2

3 = z −3

x −2

2 = y+ 2

2 = z −3

2 .

C. x

1 = y

1 = z −1

x

2 = y −2

3 = z −3

−1 .

Trang 8

Câu 92. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

a3√ 2

3√ 3

Câu 93. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

4 .

Câu 94. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 95. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ c2

a2+ b2+ c2 B. c

a2+ b2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. a

b2+ c2

a2+ b2+ c2

Câu 96. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 97. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 98. [2] Tổng các nghiệm của phương trình 3x−1.2x 2

= 8.4x−2là

Câu 99. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

Câu 100. Khối đa diện đều loại {5; 3} có số mặt

Câu 101. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 102. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 3

2 e

π

√ 2

2 e

π

2e

π

3

Câu 103. Khối đa diện đều loại {3; 5} có số mặt

Câu 104. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 105. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Trang 9

Câu 106. [4] Cho lăng trụ ABC.A BC có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi

M, N và P lần lượt là tâm của các mặt bên ABB0

A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A. 14

3

√ 3

3 .

Câu 107. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

C Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

Câu 108. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 109. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

C Phần thực là 4, phần ảo là −1 D Phần thực là −1, phần ảo là 4.

Câu 110. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 111. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Câu 112. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 113. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 114. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 115. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 7

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 116 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Trang 10

Câu 117. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 118. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 119. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối 20 mặt đều D Khối tứ diện đều.

Câu 120. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√3

a3√6

a3√6

48 .

Câu 121. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.

Câu 122. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. 2a

3

a

√ 3

a

√ 3

√ 3

Câu 123. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

A 2 và 2

2 và 3

Câu 124. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 4a

3√

6

2a3√ 6

a3√ 6

3√ 6

Câu 125. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

5.

Câu 126. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng −∞;1

3

!

Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3√15

a3√6

3√ 6

Câu 128. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

A 3

Câu 129. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 130. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

HẾT

Ngày đăng: 10/04/2023, 13:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w