LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x− √ 2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ th[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và không có tiệm cận đứng.
B Có một tiệm cận ngang và một tiệm cận đứng .
C Không có tiệm cận.
D Không có tiệm cận ngang và có một tiệm cận đứng.
Câu 2 Cho hình lập phương ABCD.A′
B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
3.
Câu 3 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (0;1
1
4;+∞) D (1;+∞)
Câu 4 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?
Câu 5 Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB Tính thể tích của khối tứ diện B.MCD
A. V
V
V
V
5.
Câu 6 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 2
(3x − 1) ln 2. B y
′ = 2 3x − 1
ln 2
3x − 1
ln 2
(3x − 1) ln 2.
Câu 7 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z
Giá trị của biểu thức A = xy + yz + zxbằng?
Câu 8 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√
ba3
A. m
2− 12
m2− 12
4m2− 3
m2− 3
Câu 9 Cho cấp số nhân (un) với u1 = −1
2; u7 = −32 Tìm q?
Câu 10 Với a là số thực dương tùy ý, log5(5a) bằng
Câu 11 Tính đạo hàm của hàm số y= 2023x
A y′= x.2023x−1 B y′ = 2023x
ln 2023 C y′ = 2023x
ln x D y′ = 2023x
Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
C 3x − 4y+ 6z + 34 = 0 D −x+ 2y + 2z + 4 = 0
Trang 2Câu 13 Cho lăng trụ đứng ABC.A′
B′C′có cạnh BC= 2a, góc giữa hai mặt phẳng (ABC) và (A′
BC)bằng
600Biết diện tích của tam giác∆A′BC bằng 2a2Tính thể tích V của khối lăng trụ ABC.A′B′C′
A V = a3
√
3
3 .
Câu 14 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt
phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD
A V = 3a3 B V = 2a3 C V = a3
Câu 15 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : y − z + 2 = 0 B (P) : y + z − 1 = 0 C (P) : x − 2z + 5 = 0 D (P) : x − 2y + 1 = 0.
Câu 16 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
√ 15
1
√ 3
5 .
Câu 17 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2
−1 = z +3
−2 Điểm nào dưới đây thuộc d?
A N(2; 1; 2) B Q(1; 2; −3) C M(2; −1; −2) D P(1; 2; 3).
Câu 18 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπlà:
A y′ = πxπ B y′ = 1
πxπ−1 C y′ = πxπ−1 D y′ = xπ−1
Câu 19 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−22 = y−1
2 = z−1
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
Câu 20 NếuR02 f(x)dx= 4 thì R2
0
h1
2f(x) − 2idx bằng
Câu 21 Cho hàm số y= f (x) có đạo hàm f′
(x) = (x − 2)2(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu 22 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 23 ChoR 1
x dx= F(x) + C Khẳng định nào dưới đây đúng?
A F′(x)= ln x B F′(x)= 1
x C F′(x)= 2
x 2 D F′(x)= −1
x 2
Câu 24 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 25 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 26 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 11
1
Câu 27 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2 bằng
Trang 3Câu 28 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
3
2.
Câu 29 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 1
1
7
2.
Câu 30 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 31 NếuR−14 f(x)= 2 và R4
−1g(x)= 3 thì R4
−1[ f (x)+ g(x)] bằng
Câu 32 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 33 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 34 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 35 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|
A max T = 3√5 B max T = 2√10 C max T = 2√5 D max T = 3√2
Câu 36 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là
A w= 1 + √27i hoặcw= 1 − √27i B w= −√27 − i hoặcw= −√27+ i
Câu 37 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i
trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′
A S = 25
4 .
Câu 38 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5
A (x − 5)2+ (y − 4)2 = 125 B (x+ 1)2+ (y − 2)2= 125
C (x − 1)2+ (y − 4)2 = 125 D x= 2
Câu 39 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là
A Parabol B Một đường thẳng C Đường tròn D Hai đường thẳng.
Câu 40 Biết số phức z thỏa mãn |z − 3 − 4i|= √5 và biểu thức T = |z + 2|2− |z − i|2đạt giá trị lớn nhất Tính |z|
A |z|= √10 B |z|= √33 C |z|= 5√2 D |z|= 50
Câu 41 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 42 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|
A max |z|= 4 B max |z|= 7 C max |z|= 6 D max |z|= 3
Trang 4Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y − 2)2+ (z − 4)2 = 3 B (x − 1)2+ (y + 2)2+ (z − 4)2= 1
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 2
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c
Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)
và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3
√ 2
2 Giả sử phương trình mặt phẳng (P) có dạng
ax+ by + cz + 2 = 0 Tính giá trị abc
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
6
3a√30
a√15
3a√6
Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính của mặt cầu (S ) có phương trình
x2+ y2+ z2− 4x − 6y+ 2z − 1 = 0
Câu 48 Cho bất phương trình 3
√ 2(x−1) +1− 3x
≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B Bất phương trình đúng với mọi x ∈ (4;+∞)
C Bất phương trình vô nghiệm.
D Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 49 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 B m > 1 hoặc m < −1
3 C m > 2 hoặc m < −1 D m < −2.
Câu 50 Đồ thị hàm số y= 2x −
√
x2+ 3
x2− 1 có số đường tiệm cận đứng là:
Trang 5HẾT