Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y =[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A m ≥ 0 B m ∈ (0; 2) C −1 < m < 7
2. D m ∈ (−1; 2).
Câu 2 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; −17; 21) B C(6; 21; 21) C C(20; 15; 7) D C(8;21
2 ; 19).
Câu 3 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 4 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A 2π
√
√
Câu 5 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
3 + ln 2
2 . B F(
π
4)= π
3 −
ln 2
2 . C F(
π
4)= π
4 + ln 2
2 . D F(
π
4)= π
4 −
ln 2
2 .
Câu 6 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
A. 4
√
3π
√
√ 3π
Câu 7 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)
và trục tung có tọa độ là
A (0; 5; 0) B (0; 0; 5) C (0; 1; 0) D (0; −5; 0).
Câu 9 Cho hàm số y = ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 10 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x+ 1)2+ (y + 4)2+ (z − 2)2= √40 B (x − 1)2+ (y − 4)2+ (z + 2)2 = 40
C (x − 1)2+ (y − 4)2+ (z + 2)2= 10 D (x+ 1)2+ (y + 4)2+ (z − 2)2 = 40
Câu 12 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox
A V = 7π
5.
Trang 2Câu 13 Có bao nhiêu số nguyên ysao cho ứng với mỗi số nguyên ycó tối đa 100 số nguyên xthỏa mãn
3y−2x≥ log5(x+ y2)?
Câu 14 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 15 Tập nghiệm của bất phương trình 52x+3 > −1 là
Câu 16 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?
A y= 1+ x
2
−2x+ 3
x −2 .
Câu 17 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 18 Phần thực của số phức z= 4 − 2i
2 − i + (1 − i)(2+ i)
A. 11
11
29
29
13.
Câu 19 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 21 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009i B (1+ i)2018 = −21009 C (1+ i)2018 = 21009i D (1+ i)2018 = 21009
Câu 22 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 23 Với mọi số phức z, ta có |z+ 1|2bằng
A z+ z + 1 B z2+ 2z + 1 C |z|2+ 2|z| + 1 D z · z+ z + z + 1
Câu 24 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là3 và phần ảo là 2 B Phần thực là −3 và phần ảo là−2.
C Phần thực là 3 và phần ảo là 2i D Phần thực là−3 và phần ảo là −2i.
Câu 25 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?
Câu 26 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
A. 1
5
4
1
2.
Câu 27 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
A. 4
18
1
9
35.
Câu 28 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 11
1
Trang 3Câu 29 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (1; 2; −3) B (−1; −2; −3) C (−1; 2; 3) D (1; −2; 3).
Câu 30 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Câu 31 NếuR2
0 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 32 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2 thỏa mãn
z1
+
z2
= 2?
Câu 33 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A P(1; 2; 3) B Q(1; 2; −3) C N(2; 1; 2) D M(2; −1; −2).
Câu 34 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
A P=
√
3
√ 2
Câu 35 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
5
2 < |z| < 7
3
2 < |z| < 2 D. 1
2 < |z| < 3
2.
Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và
z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|
A T = 2
√
97
√ 85
Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 39 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Trang 4Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4
!
4;
5 4
!
2;
9 4
!
Câu 42 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min = 2 B |w|min = 1 C |w|min = 3
2. D |w|min= 1
2.
Câu 43 Tính đạo hàm của hàm số y= 2023x
A y′ = x.2023x−1 B y′ = 2023x
ln x D y′ = 2023x
ln 2023
Câu 44 Số phức z= 2 − 3i có phần ảo là
Câu 45 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:
C −x+ 2y + 2z + 4 = 0 D 3x − 4y+ 6z + 34 = 0
Câu 46 Đồ thị hàm số y= x+ 1
x −2 (C) có các đường tiệm cận là
A y= −1 và x = 2 B y= 2 và x = 1 C y= 1 và x = −1 D y= 1 và x = 2
Câu 47 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
Câu 48 Thể tích khối lập phương có cạnh 3a là:
Câu 49 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?
A.
−
→
a
−
→ c
= √3
Câu 50 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x2và đường thẳng y = mx với m , 0 Hỏi
có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
HẾT