Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị? A y = x2 B y = x4 + 3x2 + 2 C y = c[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị?
Câu 2 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′
Câu 3 Tính I =R1
0
3
√ 7x+ 1dx
A I = 60
8 .
Câu 4 Cho lăng trụ đều ABC.A′B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:
Câu 5 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A a−√3< b−√3 B. √5
a< √5
√
2> b√2 D ea > eb
Câu 6 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?
A Nếux= 1 thì y = −3 B Nếu 0 < x < 1 thì y < −3.
C Nếux > 2 thìy < −15 D Nếu 0 < x < π thì y > 1 − 4π2
Câu 7 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(8;21
Câu 8 Bất đẳng thức nào sau đây là đúng?
A (√3+ 1)π > (√3+ 1)e B (√3 − 1)e < (√3 − 1)π
Câu 9 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
−2 = z+ 2
1 và d2 :
x −4
3 = z+ 2
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách
từ điểm M(1; 1; 1) đến (P) bằng
A. 2
3
√
10
5
53
Câu 10 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e
2
R
1
f(ln x)
Câu 11 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?
A (3, 3; 3, 5)· B (3, 1; 3, 3)· C (3, 5; 3, 7)· D (3, 7; 3, 9)·.
Câu 12 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Trang 2Câu 13 Nếu
6 R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1 ( f (x)+ g(x)) bằng
Câu 14 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 15 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng
Câu 16 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 17 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = 21009 C (1+ i)2018 = −21009i D (1+ i)2018 = 21009i
Câu 18 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số phức.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực không âm Câu 19 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 20 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 21 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 22 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là
Câu 23 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 24 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A m ≥ 1 hoặc m ≤ 0 B 0 ≤ m ≤ 1 C −1 ≤ m ≤ 0 D m ≥ 0 hoặc m ≤ −1 Câu 25 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 26 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn
z1
+ z2
= 2?
Câu 27 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π
3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng
A. 24
√
√ 2
Trang 3Câu 28 NếuR2
0 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 29 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 30 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là
A (2; 4; 6) B (−2; −4; −6) C (1; 2; 3) D (−1; −2; −3).
Câu 31 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4= (1; 1; −1) B.→−n3 = (1; 1; 1) C.→−n1 = (−1; 1; 1) D.→−n2 = (1; −1; 1)
Câu 32 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón
đã cho bằng
3πrl2
Câu 33 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′= − 1
′ = ln3
′ = 1
′ = 1 xln3.
Câu 34 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 1
Câu 35 Cho số phức z thỏa mãn
z+ 1 z
= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là
Câu 36 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 37 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?
Câu 38 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 39 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B 2 < |z| < 5
1
2 < |z| < 3
5
2 < |z| < 7
2.
Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 4)2
B P= (|z| − 2)2
|z|2− 42 D P =
|z|2− 22
Câu 41 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Câu 42 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 5
2 < |z| < 4 B. 1
2 < |z| < 2 C 3 < |z| < 5 D. 3
2 < |z| < 3
Trang 4Câu 43 Thể tích khối lập phương có cạnh 3a là:
Câu 44 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (−2; 3; 4) B.→−n = (−2; 3; 1) C.→−n = (2; −3; 4) D.→−n = (2; 3; −4)
Câu 45 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Câu 46 Hàm số y = (x + m)3+ (x + n)3
− x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
1
Câu 47 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là
Câu 48 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(1; −2; 3); R = 3 B I(1; 2; −3); R = 3 C I(1; 2; 3); R= 3 D I(−1; 2; −3); R= 3
Câu 49 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 27
5 + 6
5−
27
5 −
6
5 + 27
5 i.
Câu 50 Tìm nguyên hàm của hàm số f (x)= cos 3x
A.R cos 3xdx= sin 3x
HẾT