Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3;−1) Tìm tọa độ điểm M′đối[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′(−2; 3; 1) B M′(2; −3; −1) C M′(−2; −3; −1) D M′(2; 3; 1)
Câu 2 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
A V = π
Câu 3 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?
Câu 4 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > 2 B m > e2 C m ≥ e−2 D m > 2e
Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; −17; 21) B C(20; 15; 7) C C(8;21
2 ; 19). D C(6; 21; 21).
Câu 6 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là
A. 4
Câu 7 Công thức nào sai?
Câu 8 Cho số thực dươngm Tính I = Rm
0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 1
2m+ 2
m+ 2 ). C I = ln(
m+ 2
m+ 2 2m+ 2).
Câu 9 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 10 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?
Câu 11 Trong không gian Oxyz, cho hai đường thẳng chéo nhau d1 : x −2
d2 : x −4
−2 Gọi mặt phẳng (P) là chứa d1và (P)song song với đường thẳng d2 Khoảng cách từ điểm M(1; 1; 1) đến (P) bằng
A. √1
√
3
√
5.
Trang 2Câu 12 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?
A (3, 7; 3, 9)· B (3, 3; 3, 5)· C (3, 1; 3, 3)· D (3, 5; 3, 7)·.
Câu 13 Cho hàm số y = f (x) xác định trên tập R và có f′(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?
A Hàm số đã cho đồng biến trên khoảng (−∞; 3).
B Hàm số đã cho nghịch biến trên khoảng (1; 4).
C Hàm số đã cho nghịch biến trên khoảng (3;+∞)
D Hàm số đã cho đồng biến trên khoảng (1; 4).
Câu 14 Tính đạo hàm của hàm số y= 5x
A y′ = x.5x−1 B y′ = 5x
ln 5.
Câu 15 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) và mặt phẳng (P) : 2x+2y−z+9 = 0 Đường thẳng d đi qua A và có vectơ chỉ phương ⃗u = (3; 4; −4) cắt (P) tại B Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90o Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A I(−1; −2; 3) B H(−2; −1; 3) C K(3; 0; 15) D J(−3; 2; 7).
Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2+ (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?
A (P) tiếp xúc mặt cầu (S ) B (P) đi qua tâm mặt cầu (S ).
C (P) cắt mặt cầu (S ) D (P) không cắt mặt cầu (S ).
Câu 17 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 18 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 19 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là
Câu 20 Với mọi số phức z, ta có |z+ 1|2bằng
A z2+ 2z + 1 B z · z+ z + z + 1 C |z|2+ 2|z| + 1 D z+ z + 1
Câu 21 Cho số phức z thỏa mãn z = (1+ i)(2 + i)
1 − i + (1 − i)(2 − i)
1+ i Trong tất cả các kết luận sau, kết luận nào đúng?
z.
Câu 22 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 23 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Trang 3Câu 24 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực.
C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số thực dương.
Câu 25 Những số nào sau đây vừa là số thực và vừa là số ảo?
A 0 và 1 B C.Truehỉ có số 0 C Không có số nào D Chỉ có số 1.
Câu 26 Mệnh đề nào sau đây sai?
A.R( f (x) − g(x)) = R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R
B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R
C.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R
D.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R
Câu 27 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x − y+ z + 6 = 0 B 6x + y − z − 6 = 0 C x + y − z − 3 = 0 D x+ y − z + 1 = 0
Câu 28 ChoR01 f(x)= 2Rv `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng
qua I, song song với mặt phẳng (ABC) có phương trình là:
A y − 1= 0 B z − 1= 0 C x+ y + z − 3 = 0 D x − 1= 0
Câu 30 Cho hàm số f (x) có đạo hàm với mọi x ∈ R và f′
(x)= 2x + 1 Giá trị f (2) − f (1) bằng
Câu 31 Tìm nguyên hàm I = R xcosxdx
2 + C
2 + C
Câu 32 Hàm số f (x) thoả mãn f′
(x)= xxlà:
A x2 x+ C B (x − 1)x+ C C x2+ x+1
x+ 1 + C. D (x+ 1)x+ C.
Câu 33 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x)= ex B F(x)= ex+ 1 C F(x) = e2x D F(x)= ex +1.
Câu 34 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 36 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 1
2 < |z| < 3
3
2 < |z| < 2 C. 5
2 < |z| < 7
2. D 2 < |z| <
5
2.
Câu 37 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
1
√ 2
Trang 4Câu 38 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min = 2 B |w|min = 1
2. C |w|min = 1 D |w|min= 3
2.
Câu 39 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
2.
Câu 40 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 41 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
A. 3
1
2.
Câu 42 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 43 Cho bất phương trình 3
√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng
A Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B Bất phương trình đúng với mọi x ∈ (4;+∞)
C Bất phương trình vô nghiệm.
D Bất phương trình đúng với mọi x ∈ [ 1; 3].
Câu 44 Hàm số nào trong các hàm số sau đồng biến trên R.
C y= 4x+ 1
Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A= 2a Tính thể tích khối chóp S.ABCD
Câu 47 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√3 Tính thể tích khối chóp S ABC
A. a
3√
5
a3√15
a3√15
a3√15
Câu 48 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x
sin x+ 2 cos x và F(−
π
2)= π Khi đó giá trị F(0) bằng:
A. 1
5ln 2+ 6π
6π
1
4ln 2+ 3π
2 . D ln 2+ 6π
5 .
Câu 49 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 50 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 25
27
23
29
4 .
Trang 5HẾT