1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (544)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 - 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,54 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) 2x− y+ 2z+ 5 = 0 T[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc

tơ pháp tuyến của (P) là

A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2).

Câu 2 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2e B m > e2 C m ≥ e−2 D m > 2.

Câu 3 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; −5; 0) B (0; 0; 5) C (0; 1; 0) D (0; 5; 0).

Câu 4 Cho hình hộp ABCD.A

B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′

lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′D′theo a

Câu 5 Kết quả nào đúng?

A.R sin2xcos x= sin3x

C.R sin2xcos x= cos2x sin x + C D.R sin2xcos x= −sin3x

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một

điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN

để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(20; 15; 7) B C(6; −17; 21) C C(8;21

2 ; 19). D C(6; 21; 21).

Câu 7 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 8 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

l2− R2 D 2πRl.

Câu 9 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P= 1

55.

Câu 11 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x + 2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Câu 12 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là

Câu 13 Tập nghiệm của bất phương trình 52x+3> −1 là

Trang 2

Câu 14 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

2.

Câu 15 Cho hàm số y= f (x) có bảng biến thiên như sau

Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?

Câu 16 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn

z1

2

+

z2

2

= 5

Câu 17 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B C.Truehỉ có số 0 C Không có số nào D Chỉ có số 1.

Câu 18 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= 5 B |z1+ z2|= 1 C |z1+ z2|= √5 D |z1+ z2|= √13

Câu 19 Cho số phức z1= 2 + 3i, z2 = 5 − i Giá trị của biểu thức

z1+ z2

z1

Câu 20 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 21 Cho P= 1 + i + i2+ i3+ · · · + i2017 Đâu là phương án chính xác?

Câu 22 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 23 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 24 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= 34 B |z|=

√ 34

√ 34

3 . D |z|= √34

Câu 25 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 26 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) và B(2; 2; 1) Vectơ−AB→có tọa độ là

A (3; 3; −1) B (3; 1; 1) C (−1; −1; −3) D (1; 1; 3).

Câu 27 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R−12 f′(x) bằng:

Câu 28 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A.Rb

a f(2x+ 3) = F(2x + 3)

b

a

B Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

C.Ra

b f(x)= F(b) − F(a)

D.Rabk · f(x)= k[F(b) − F(a)]

Trang 3

Câu 29 Mệnh đề nào sau đây sai?

A.R( f (x)+ g(x)) = R f (x) + R g(x), với mọi hàm số f (x); g(x) liên tục trên R

B. R k f(x)= k R f (x) với mọi hằng số k và với mọi hàm số f (x) liên tục trên R

C.R f′(x)= f (x) + C với mọi hàm số f (x) có đạo hàm liên tục trên R

D.R( f (x) − g(x)) = R f (x) − R g(x), với mọi hàm số f (x); g(x) liên tục trên R

Câu 30 Hàm số y= F(x) là một nguyên hàm của hàm số y = f (x) Hãy chọn khẳng định đúng

A F′(x)= f (x) B F′(x)+ C = f (x) C F(x) = f′

(x) D F(x)= f′

(x)+ C

Câu 31 BiếtR8

1 f(x)= −2; R14 f(x)= 3; R14g(x)= 7 Mệnh đề nào sau đây sai?

A.R4

4 f(x)= 1

C.R4

4 f(x)= −5

Câu 32 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), và I(1; 1; 1) Mặt phẳng

qua I, song song với mặt phẳng (ABC) có phương trình là:

A x − 1= 0 B y − 1= 0 C x+ y + z − 3 = 0 D z − 1= 0

Câu 33 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

C x − 2y+ 2z + 15 = 0 D x+ 2y + 2z + 15 = 0

Câu 34 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A.

2

1

1

2.

Câu 35 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 36 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 37 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2

z1

+ 1

z2

= 1

z1+ z2

Tính giá trị biểu thức P=

z1

z2

+

z2

z1

A. √1

2

√ 2

2 .

Câu 38 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

A P=

2

√ 3

Câu 39 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 1

4;

5

4

!

4;+∞

!

4

!

2;

9 4

!

Câu 41 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

2.

Trang 4

Câu 42 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2

nhỏ nhất Tính tổng a+ b + c

Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

15

a3√ 5

a3√ 15

a3√ 15

16 .

Câu 45 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 46 Biết

π 2 R

0

sin 2xdx= ea Khi đó giá trị a là:

Câu 47 Tính đạo hàm của hàm số y= 5x +cos3x

A y′ = (1 − sin 3x)5x +cos3xln 5. B y′ = (1 − 3 sin 3x)5x +cos3xln 5.

C y′ = (1 + 3 sin 3x)5x +cos3xln 5. D y′ = 5x +cos3xln 5.

Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. a

15

3a√30

3a√6

3a√6

Câu 49 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

17

πa2√ 15

πa2√ 17

πa2√ 17

Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Trang 5

HẾT

Ngày đăng: 10/04/2023, 07:51

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm