Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R
A m > e2 B m ≥ e−2 C m > 2 D m > 2e
Câu 2 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên R B Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
C Hàm số nghịch biến trên (0;+∞) D Hàm số nghịch biến trên R.
Câu 3 Cho hình phẳng (D) giới hạn bởi các đường y = √x, y = x, x = 2 quay quanh trục hoành Tìm thể tích V của khối tròn xoay tạo thành?
A V = 10π
Câu 4 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
C y= 3x+ 1
Câu 5 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
2> b√2 D a−√3 < b−√3
Câu 6 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; 2; 0) B (0; 6; 0) C (0; −2; 0) D (−2; 0; 0).
Câu 7 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3
Tìm F(π
4)
A F(π
4)= π
3 −
ln 2
2 . B F(
π
4)= π
3 + ln 2
2 . C F(
π
4)= π
4 + ln 2
2 . D F(
π
4)= π
4 −
ln 2
2 .
Câu 8 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 9 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng
Câu 10 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Câu 11 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là
Câu 12 Thiết diện qua trục của một hình nón là một tam giác đều cạnh có độ dài bằng a Tính diện tích
toàn phần St p của hình nón đó
A St p = 1
4πa2 B St p = 3
4πa2
Câu 13 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 14 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Trang 2Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40 B (x+ 1)2+ (y + 4)2+ (z − 2)2= 40
C (x − 1)2+ (y − 4)2+ (z + 2)2 = 10 D (x − 1)2+ (y − 4)2+ (z + 2)2= 40
Câu 16 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 17 Những số nào sau đây vừa là số thực và vừa là số ảo?
A 0 và 1 B C.Truehỉ có số 0 C Không có số nào D Chỉ có số 1.
Câu 18 Số phức z= (1+ i)2017
21008i có phần thực hơn phần ảo bao nhiêu đơn vị?
Câu 19 Cho số phức z thỏa mãn z= 4(−3+ i)
1 − 2i + (3 − i)2
−i Mô-đun của số phức w= z − iz + 1 là
A |w|= √48 B |w|= 6√3 C |w|= √85 D |w|= 4√5
Câu 20 Cho số phức z= 2 + 5i Tìm số phức w = iz + z
Câu 21 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là
Câu 22 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 23 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009 B (1+ i)2018 = 21009 C (1+ i)2018 = 21009i D (1+ i)2018 = −21009i
Câu 24 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 25 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 26 ChoR3
a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?
1
2).
Câu 27 Họ nguyên hàm của hàm số f (x)= cosx + sinx là
A F(x) = sinx − cosx + C B F(x)= sinx + cosx + C
C F(x) = −sinx − cosx + C D F(x)= −sinx + cosx + C
Câu 28 ChoR1
0 f(x)= 2R v `a R1
0 g(x)= 5 R1
0 [ f (x) − 2g(x)] bằng
Câu 29 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
C x − 2y+ 2z + 15 = 0 D x+ 2y + 2z + 15 = 0
Câu 30 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x) = e2x B F(x) = ex +1. C F(x)= ex+ 1 D F(x)= ex
Trang 3Câu 31 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số.
2023cos(2023x).
C f (x)= 2023cos(2023x) D f (x)= −2023cos(2023x)
Câu 32 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi đó mặt phẳng
(ABC) có phương trình là
A x+ y − z − 3 = 0 B x+ y − z + 1 = 0 C 6x + y − z − 6 = 0 D x − y + z + 6 = 0.
Câu 33 Tìm nguyên hàm I = R xcosxdx
A I = x2sinx
2 + C
Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P=
|z|2− 22 B P=
|z|2− 42 C P = (|z| − 2)2 D P = (|z| − 4)2
Câu 35 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 0;1
4
!
4;+∞
!
2;
9 4
!
4;
5 4
!
Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 37 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 1
Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 3
2 < |z| < 2 B. 5
2 < |z| < 7
1
2 < |z| < 3
2. D 2 < |z| <
5
2.
Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 40 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
√ 2
1
5.
Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.
Biết rằng điểm biểu diễn số phức ω = 1
z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?
Câu 42 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
Trang 4Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a > 1 thì ax > ay ⇔ x> y
C Nếu a > 0 thì ax > ay ⇔ x< y D Nếu a < 1 thì ax > ay ⇔ x< y
Câu 44 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 45 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 46 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m < −2 B m > 1 C m > 1 hoặc m < −1
3 D m > 2 hoặc m < −1.
Câu 47 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m
Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt
phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2 nhỏ nhất Tính tổng a+ b + c
Câu 49 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 2mn+ n + 2
C log22250= 2mn+ 2n + 3
Câu 50 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= x3− 3x2
B y= −2x4+ 4x2 C y= −x4+ 2x2 D y= −x4+ 2x2+ 8
Trang 5HẾT