1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (851)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 125,58 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = (1 − m)x4 + 3x2 chỉ c[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 2 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếux > 2 thìy < −15 B Nếux= 1 thì y = −3

C Nếu 0 < x < π thì y > 1 − 4π2 D Nếu 0 < x < 1 thì y < −3.

Câu 3 Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − 2= 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R = 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất?

A x= 5 + 2ty = 5 + tz = 2 − 4t B x= 5 + 2ty = 5 + tz = 2

Câu 4 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Câu 5 Bất đẳng thức nào sau đây là đúng?

A (√3 − 1)e < (√3 − 1)π B 3π < 2π

C (√3+ 1)π > (√3+ 1)e D 3−e > 2−e

Câu 6 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

4πR3

Câu 7 Cho số thực dươngm Tính I = Rm

0

dx

x2+ 3x + 2 theo m?

A I = ln(m+ 2

m+ 1). B I = ln(

m+ 2 2m+ 2). C I = ln(

2m+ 2

m+ 2 ). D I = ln(

m+ 1

m+ 2).

Câu 8 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A a

3< b−√3 B. √5

a< √5

2> b√2

Câu 9 Đạo hàm của hàm số y= (2x + 1)−

1

3 trên tập xác định là

A (2x+ 1)−

1

3(2x+ 1)−

4

3

C −1

3(2x+ 1)−

4

1

3 ln(2x+ 1)

Câu 10 Tập nghiệm của bất phương trình 52x +3> −1 là

Câu 11 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng

Câu 12 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac

nhau

Trang 2

Câu 13 Cho hàm số f (x) liên tục trên R và

2 R

0

( f (x)+ 2x) = 5 TínhR2

0

f(x)

Câu 14 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A 5x5− sin x+ C B 5x5+ sin x + C C x5− sin x+ C D x5+ sin x + C

Câu 15 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= 2

−2x+ 3

1+ x

1 − 2x.

Câu 16 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120◦ Một mặt phẳng đi qua

Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB

Câu 17 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số thực dương.

C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số phức.

Câu 18 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 19 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A z= 1

Câu 20 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 21 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?

A z − z = 2a B z+ z = 2bi C |z2|= |z|2 D z · z= a2− b2

Câu 22 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 23 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 24 Tìm số phức liên hợp của số phức z= i(3i + 1)

Câu 25 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 26 Tìm nguyên hàm I = R xcosxdx

A I = x2sinx

2 + C

Câu 27 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

Trang 3

Câu 28 F(x) là một nguyên hàm của hàm số y= xex Hàm số nào sau đây không phải là F(x)?

A F(x)= 1

2e

x2 + 2 B F(x)= −1

2(2 − e

x2) C F(x) = −1

2e

x2 + C D F(x) = 1

2(e

x2 + 5)

Câu 29 Cho hàm số f (x) liên tục trên khoảng (−2; 3) Gọi F(x) là một nguyên hàm của f (x) trên khoảng

(−2; 3) Tính I = R2

−1[ f (x)+ 2x], biết F(−1) = 1 và F(2) = 4

Câu 30 Cho f (x) là hàm số liên tục trên [a; b] (với a < b ) và F(x) là một nguyên hàm của f (x) trên

[a; b] Mệnh đề nào dưới đây đúng?

A Diện tích S của hình phẳng giới hạn bởi hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) và trục hoành được tính theo công thức S = F(b) − F(a)

B. Ra

b f(x)= F(b) − F(a)

C.Rb

a f(2x+ 3) = F(2x + 3)

b

a

D.Rabk · f(x)= k[F(b) − F(a)]

Câu 31 Cho hàm số y= f (x) có đạo hàm, liên tục trên R và f (x) > 0 khi x ∈ [0; 5] Biết f (x)· f (5− x) =

1, tính tích phân I = R5

0 1+ f (x).

A I = 5

2.

Câu 32 ChoR3

a x−2 dx= 4 Giá trị của tham số a thuộc khoảng nào sau đây?

A (1

1

Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ

A (−3; −1; 4) B (−3; −1; −4) C (3; 1; 4) D (3; −1; −4).

Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 22 B P=

|z|2− 42 C P = (|z| − 4)2 D P = (|z| − 2)2

Câu 35 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 36 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

Câu 37 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 7

√ 2

√ 2

√ 6

√ 5

5 .

Câu 38 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 39 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Trang 4

Câu 40 Cho số phức z thỏa mãn

z+ 1 z = 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

2;

9 4

!

4;

5 4

!

4

!

Câu 43 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= −x4+ 2x2+ 8 B y= −x4+ 2x2 C y= x3− 3x2

D y= −2x4+ 4x2

Câu 44 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = √ 1

x2− 1 ln 4

(x2− 1)log4e. C y

2(x2− 1) ln 4. D y

(x2− 1) ln 4.

Câu 45 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 46 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 47 Cho bất phương trình 3

√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình đúng với mọi x ∈ (4;+∞)

B Bất phương trình đúng với mọi x ∈ [ 1; 3].

C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

D Bất phương trình vô nghiệm.

Câu 48 Cho hình lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác tù, AB = AC Góc tạo bởi hai đường thẳng AA′ và BC′ bằng 300; khoảng cách giữa AA′ và BC′ bằng a; góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 600 Tính thể tích khối lăng trụ ABC.A′B′C′

A 9a3√

3

Câu 49 Biết

π 2 R

0 sin 2xdx= ea Khi đó giá trị a là:

Câu 50 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Trang 5

HẾT

Ngày đăng: 10/04/2023, 07:41