Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y =[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A m ∈ (−1; 2) B −1 < m < 7
Câu 2 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 3 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 4 Cho lăng trụ đều ABC.A′
B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A.
√
3a
√ 5a
a
√
2a
√
5.
Câu 5 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
3 −
ln 2
2 . B F(
π
4)= π
4 −
ln 2
2 . C F(
π
4)= π
3 + ln 2
2 . D F(
π
4)= π
4 + ln 2
2 .
Câu 6 Đồ thị hàm số nào sau đây có vô số đường tiệm cận đứng?
C y= 3x+ 1
Câu 7 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được
A Đường hypebol B Đường elip C Đường tròn D Đường parabol.
Câu 8 Số nghiệm của phương trình 9x+ 5.3x
− 6= 0 là
Câu 9 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= −cos 3x
3 . B f (x)= 3 cos 3x C f (x)= −3 cos 3x D f (x)= cos 3x
Câu 10 Cho hàm số f (x)=
− 1
3x
3+ 1
2(2m+ 3)x2− (m2+ 3m)x + 2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Câu 11 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?
Câu 12 Nếu
6 R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1 ( f (x)+ g(x)) bằng
Câu 13 Đạo hàm của hàm số y= (2x + 1)−
1
3 trên tập xác định là
Trang 2A 2(2x+ 1)−
1
3(2x+ 1)−
4
3
C (2x+ 1)−
1
3(2x+ 1)−
4
3
Câu 14 Cho hai số phức u, v thỏa mãn
u
= v
= 10 và
3u − 4v
= 50 Tìm giá trị lớn nhất của biểu thức
4u+ 3v − 8 + 6i
Câu 15 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A P(4 ; −1 ; 3) B Q(4 ; 4 ; 2) C M(0 ; 0 ; 2) D N(1 ; 1 ; 7).
Câu 16 Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn
phương án dưới đây Hỏi hàm số đó là hàm số nào?
Câu 17 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z
A Phần thực là −3 và phần ảo là−2 B Phần thực là 3 và phần ảo là 2i.
C Phần thực là3 và phần ảo là 2 D Phần thực là−3 và phần ảo là −2i.
Câu 18 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 19 Đẳng thức nào đúng trong các đẳng thức sau?
A (1+ i)2018= −21009i B (1+ i)2018 = 21009i C (1+ i)2018 = 21009 D (1+ i)2018 = −21009
Câu 20 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A |z2|= |z|2 B z − z = 2a C z+ z = 2bi D z · z= a2− b2
Câu 21 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 22 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A m ≥ 1 hoặc m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C 0 ≤ m ≤ 1 D −1 ≤ m ≤ 0.
Câu 23 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số phức B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực dương.
Câu 24 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 25 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 26 Tìm nguyên hàm F(x) của hàm số f (x)= ex +1, biết F(0)= e
A F(x) = ex +1. B F(x) = ex C F(x)= e2x D F(x)= ex+ 1
Câu 27 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương
trình
C x − 2y+ 2z − 15 = 0 D x+ 2y + 2z − 15 = 0
Trang 3Câu 28 Họ nguyên hàm của hàm số f (x)= cosx + sinx là
A F(x)= −sinx + cosx + C B F(x)= sinx + cosx + C
C F(x)= sinx − cosx + C D F(x)= −sinx − cosx + C
Câu 29 Tìm hàm số F(x) không là nguyên hàm của hàm số f (x)= sin2x
A F(x)= −1
2cos2x. B F(x)= sin2x C F(x) = −cos2x D F(x)= −cos2x
Câu 30 F(x) là một nguyên hàm của hàm số y= xex2 Hàm số nào sau đây không phải là F(x)?
A F(x)= 1
2e
x 2
+ 2 B F(x)= −1
2e
x 2
+ C C F(x) = 1
2(e
x 2
+ 5) D F(x)= −1
2(2 − e
x 2
)
Câu 31 Tích phân I = R02(2x − 1) có giá trị bằng:
Câu 32 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R2
−1 f′(x) bằng:
Câu 33 Giá trị củaR0
−1ex+1dxbằng
Câu 34 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 2)2 B P= (|z| − 4)2 C P =
|z|2− 42 D P =
|z|2− 22
Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Câu 37 Cho số phức z thỏa mãn1 − √5i|z|= 2
√ 42
z +√3i+√15 Mệnh đề nào dưới đây là đúng?
A. 3
2 < |z| < 3 B. 5
2 < |z| < 4 C 3 < |z| < 5 D. 1
2 < |z| < 2
Câu 38 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 3
√ 6
√ 5
√ 2
√ 2
Câu 39 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2
1+z2
2+z2
3
Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
2;
9 4
!
4;
5 4
!
4
!
Câu 41 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
Trang 4Câu 42 Gọi z1; z2 là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức
[(i − z1)(i − z2)]2017bằng bao nhiêu?
Câu 43 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P = 2a +2b+3c. B P = 2a +b+c. C P= 26abc D P= 2abc
Câu 44 Tìm tập xác định D của hàm số y=
r log23x+ 1
x −1
Câu 45 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 1 B m > 2 hoặc m < −1 C m > 1 hoặc m < −1
3 D m < −2.
Câu 46 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 47 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng
x= −1; x = 2
A. 25
29
23
27
4 .
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A.
3
R
1
|x2− 2x|dx =R2
1
|x2− 2x|dx −
3 R
2
|x2− 2x|dx
B.
3
R
1
|x2− 2x|dx =R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
C.
3
R
1
|x2− 2x|dx =R2
1 (x2− 2x)dx −
3 R
2 (x2− 2x)dx
D.
3
R
1
|x2− 2x|dx = −R2
1
(x2− 2x)dx+R3
2 (x2− 2x)dx
Câu 49 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 50 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R (2x+ 1)2
dx= (2x+ 1)3
C.R e2xdx=e2x
Trang 5HẾT