1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thptqg (759)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 12
Dung lượng 151,56 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim 2n − 3 2n2 + 3n + 1 bằng A 1 B 0 C −∞ D +∞ Câu 2[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 2. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

0 = 1 2x3ln 10. C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 4 ln 2x

2x3ln 10 .

Câu 3. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 4. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3√ 15

a3

a3√ 15

5 .

Câu 5. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 6. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có f0(x)= F(x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 7. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

6 .

Câu 8. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 9. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

2 . B V = πa3

√ 3

6 . C V = πa3

√ 3

3 . D V = πa3

√ 6

6 .

Câu 10. Khối đa diện đều loại {3; 3} có số cạnh

Câu 11. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3

− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng √24

A m = −3, m = 4 B m= −3 C −3 ≤ m ≤ 4 D m= 4

Câu 12. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 13. Tính lim

x→1

x3− 1

x −1

Trang 2

Câu 14. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 15. Khối đa diện đều loại {5; 3} có số mặt

Câu 16. Tính lim

x→2

x+ 2

x bằng?

Câu 17. Tứ diện đều thuộc loại

Câu 18 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 19. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 20. Dãy số nào sau đây có giới hạn là 0?

A. 4

e

!n

3

!n

3

!n

3

!n

Câu 21. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

3√ 3

a3

3 .

Câu 22. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

Câu 23. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 24. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 25. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞;1

2

!

2;+∞

!

2;+∞

!

2

!

Câu 26. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1+ 2e

4 − 2e. D m= 1+ 2e

4e+ 2.

Câu 27. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R B. D = (1; +∞) C. D = R \ {1} D. D = (−∞; 1)

Câu 28. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Trang 3

Câu 29. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = n3− 3n

n+ 1 . C un = n2− 4n D un = 6

5

!n

Câu 30. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Câu 31. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 32. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→af(x)= f (a)

C f (x) có giới hạn hữu hạn khi x → a D lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 33. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 34. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số nghịch biến trên khoảng (−2; 1).

Câu 35. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 36. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 37. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 1) B A0(−3; −3; −3) C A0(−3; −3; 3) D A0(−3; 3; 3)

Câu 38. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 39. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối lập phương C Khối bát diện đều D Khối 12 mặt đều.

Câu 40. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 41. [1] Đạo hàm của làm số y = log x là

0 = 1

xln 10. C y

0 = ln 10

0 = 1

x.

Câu 42. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 43. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

3.

Trang 4

Câu 44. Tính lim

x→3

x2− 9

x −3

Câu 45 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα

B aαbα = (ab)α C. a

α

aβ = aα D aα+β = aα.aβ

Câu 46 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 47. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

2.

Câu 48. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

Câu 49. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 50. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 51. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 52. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 53. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5

bằng

A.

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 55. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 56. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

3

2.

Trang 5

Câu 57. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 9 lần B Tăng gấp 3 lần C Tăng gấp 27 lần D Tăng gấp 18 lần.

Câu 58. Khối đa diện đều loại {4; 3} có số mặt

Câu 59. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 60. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 3

a3√ 5

a3√ 5

6 .

Câu 61. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 62. [12215d] Tìm m để phương trình 4x +√1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

9

3

4.

Câu 63. Khối lập phương thuộc loại

Câu 64. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 65. Hàm số nào sau đây không có cực trị

A y = x3− 3x B y= x4− 2x+ 1 C y= x +1

x. D y= x −2

2x+ 1.

Câu 66. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 67 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

xαdx= α + 1xα+1 + C, C là hằng số B.

Z 1

xdx= ln |x| + C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z 0dx = C, C là hằng số

Câu 68. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 69. [1] Giá trị của biểu thức 9log3 12bằng

Câu 70. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

1

2

3.

Trang 6

Câu 71. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B Cả ba câu trên đều sai.

C F(x)= G(x) trên khoảng (a; b)

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 72. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e +2

e. B T = e + 1 C T = e + 3 D T = 4 + 2

e.

Câu 73. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 74. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 75. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 76. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 6

a3√ 2

6 .

Câu 77. Hàm số y= −x3+ 3x2

− 1 đồng biến trên khoảng nào dưới đây?

Câu 78. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 79. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 80. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2017 B T = 2016 C T = 2016

2017. D T = 1008

Câu 81. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 50, 7 triệu đồng B 20, 128 triệu đồng C 3, 5 triệu đồng D 70, 128 triệu đồng.

Câu 82. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

6

a3√2

a3√3

a3√3

48 .

Câu 83. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trang 7

Trong hai câu trên

A Cả hai câu trên đúng B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai câu trên sai.

Câu 84 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 B.

Z ( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx

C.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx D.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

Câu 85. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. −∞;2

5

#

B. " 2

5;+∞

!

"

−2

3;+∞

!

3

#

Câu 86. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 87. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 88. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 89. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 3

2 e

π

√ 2

2 e

π

4

Câu 90. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = S h B V = 1

2S h.

Câu 91. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 92. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 93. Tính limcos n+ sin n

n2+ 1

Câu 94. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Cả hai đều đúng C Chỉ có (II) đúng D Chỉ có (I) đúng.

Câu 95. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 8

Câu 96. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

2a3√ 6

a3√ 6

12 .

Câu 97. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

a

2a

a

√ 2

3 .

Câu 98. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 99. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2

− 2 ln x trên [e−1; e] là

− 2; m= 1

C M = e−2+ 1; m = 1 D M = e2− 2; m = e−2+ 2

Câu 100. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

Câu 101. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 102. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

A. 1

1 2e3

Câu 103. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√ 3

2√

3√ 3

12 .

Câu 104. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2)= m có nghiệm thực

x ≥1

Câu 105. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 106 Phát biểu nào sau đây là sai?

A lim √1

nk = 0 với k > 1

C lim un= c (Với un = c là hằng số) D lim qn= 1 với |q| > 1

Câu 107. Hàm số f có nguyên hàm trên K nếu

Trang 9

Câu 108. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.

Câu 109. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 110. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln x C y0 = 2x ln 2 D y0 = 1

ln 2.

Câu 111. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = 1 − 2n

5n+ n2 C un = n2− 3n

n2 D un = n2+ n + 1

(n+ 1)2

Câu 112. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là √2 − 1, phần ảo là −

3 B Phần thực là 1 − √2, phần ảo là −

√ 3

C Phần thực là

2 − 1, phần ảo là

2, phần ảo là 1 −

√ 3

Câu 113. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 114. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 115. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = √4

Câu 116. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

3.

Câu 117. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 3

9

Câu 118. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 119. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 120. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 121. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 122. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi

qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u= (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

B.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

D.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

Trang 10

Câu 123. Tính lim

x→ +∞

x −2

x+ 3

3.

Câu 124. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

3.

Câu 125. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 126. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = R B. D = [2; 1] C. D = R \ {1; 2} D. D = (−2; 1)

Câu 127. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

3√ 15

a3√5

a3√6

3 .

Câu 128. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 5a

8a

2a

a

9.

Câu 129. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 130. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

HẾT

Ngày đăng: 10/04/2023, 05:41

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN