1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (516)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt (516)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 152,63 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Các khẳng định nào sau đây là sai? A (∫ f (x)dx )′ = f (x)[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 11 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx

!0

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C

C.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C D.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số

Câu 2. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

Câu 3. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

2.

Câu 4. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3√ 3

a3

√ 3

a3

3 .

Câu 5. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 6. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 7. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 8. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 9. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 10. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

B F(x)= G(x) trên khoảng (a; b)

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D Cả ba câu trên đều sai.

Câu 11 Phát biểu nào sau đây là sai?

A lim un= c (Với un = c là hằng số) B lim √1

n = 0

nk = 0 với k > 1

Trang 2

Câu 12. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|.

Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 14. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 15. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 16. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 17. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 18. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.

Câu 19. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 20 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 21. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 22. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A. 7

-2

Câu 23. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Câu 24. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 25. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Trang 3

Câu 26. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 27. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 28. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

√ 2

Câu 29. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 30. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.

Câu 31. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h.

Câu 32. [1] Tập xác định của hàm số y= 2x−1là

A. D = (0; +∞) B. D = R \ {0} C. D = R \ {1} D. D = R

Câu 33. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x3−3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 34. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 9

1

2

1

10.

Câu 35. Khối đa diện đều loại {3; 3} có số mặt

Câu 36. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 37. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 38. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 39. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Trang 4

A 10 năm B 12 năm C 11 năm D 13 năm.

Câu 40. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 41. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 42. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 43. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

27.

Câu 44. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

2 . B V = πa3

√ 3

3 . C V = πa3

√ 6

6 . D V = πa3

√ 3

6 .

Câu 45. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai đều sai D Cả hai đều đúng.

Câu 46. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1

e. B M= e, m = 1 C M = 1

e, m = 0 D M = e, m = 0

Câu 47. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

B.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

Câu 48 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z

xαdx= α + 1xα+1 + C, C là hằng số

Câu 49. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4e+ 2. B m=

1 − 2e 4e+ 2. C m=

1+ 2e

4 − 2e. D m= 1 − 2e

4 − 2e.

Câu 50. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Trang 5

Câu 51. Cho hàm số y= −x3+ 3x2

− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số đồng biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Câu 52. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là

2, phần ảo là 1 −

2 − 1, phần ảo là −

√ 3

Câu 53. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1

Câu 54. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 55. Dãy số nào có giới hạn bằng 0?

A un= n3− 3n

n+ 1 . B un = −2

3

!n C un = n2− 4n D un = 6

5

!n

Câu 56. Khối đa diện đều loại {5; 3} có số cạnh

Câu 57. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 58. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 59. Tìm m để hàm số y= x3

− 3mx2+ 3m2có 2 điểm cực trị

Câu 60 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 61. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

"

2;5 2

! D. " 5

2; 3

!

Câu 62. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 63. Biểu thức nào sau đây không có nghĩa

A. −3

Câu 64. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Trang 6

Câu 65. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 20, 128 triệu đồng B 70, 128 triệu đồng C 50, 7 triệu đồng D 3, 5 triệu đồng.

Câu 66. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm tứ diện đều.

B Năm hình chóp tam giác đều, không có tứ diện đều.

C Một tứ diện đều và bốn hình chóp tam giác đều.

D Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 67. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 68. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 69. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

√ 3

3

4.

Câu 70. Khối đa diện đều loại {3; 5} có số cạnh

Câu 71. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

8a3√3

4a3√3

8a3√3

9 .

Câu 73. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−1; 0) B (−∞; −1) và (0; +∞) C (−∞; 0) và (1; +∞) D (0; 1).

Câu 74. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 75. Tính lim 5

n+ 3

Câu 76. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. 2a

3√

6

a3√3

a3√3

a3

√ 6

12 .

Câu 77. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 78. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Trang 7

Câu 79. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 80. Khối đa diện đều loại {5; 3} có số mặt

Câu 81. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 82. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 83. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 84. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số mặt của khối chóp bằng 2n+1.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số cạnh của khối chóp bằng 2n.

Câu 85. Khối đa diện đều loại {3; 4} có số cạnh

Câu 86. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

(1, 12)3− 1 triệu.

C m = (1, 01)3

(1, 01)3− 1 triệu. D m = 100.1, 03

3 triệu.

Câu 87. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 88. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

A. 10a

3√

3

Câu 89. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Câu 90. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 91. Khối đa diện đều loại {3; 4} có số mặt

Trang 8

Câu 92. Hàm số nào sau đây không có cực trị

A y = x3− 3x B y= x +1

x. C y= x −2

2x+ 1. D y= x4− 2x+ 1.

Câu 93. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 94. [2] Đạo hàm của hàm số y = x ln x là

A y0 = ln x − 1 B y0 = x + ln x C y0 = 1 − ln x D y0 = 1 + ln x

Câu 95. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 96. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 97. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 98. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 99. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 100. Khối lập phương thuộc loại

Câu 101. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 102. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 103. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

A.

Câu 104. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 105. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 106. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Câu 107. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3√ 3

a3

a3√3

9 .

Trang 9

Câu 108. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√ 2

a3√ 2

a3√ 2

2 .

Câu 109. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 110. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 111. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 112. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

√ 2

a

√ 2

2 .

Câu 113. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 114. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 115. Hàm số y= −x3+ 3x2

− 1 đồng biến trên khoảng nào dưới đây?

Câu 116. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

2 .

Câu 117. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1079

1728

23

1637

4913.

Câu 118. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 119. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên đúng B Cả hai câu trên sai C Chỉ có (I) đúng D Chỉ có (II) đúng.

Câu 120. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 121. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Trang 10

Câu 122. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.

Câu 123. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 124. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Câu 125. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 126. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị nhỏ nhất trên K B f (x) có giá trị lớn nhất trên K.

Câu 127. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Câu 128. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 129 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα)β B aαbα = (ab)α C. a

α

aβ = aα D aα+β = aα.aβ

Câu 130. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

A m = ±3 B m= ±√3 C m= ±√2 D m= ±1

HẾT

Ngày đăng: 10/04/2023, 01:47

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN