1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đê ôn thptqg 2 (600)

12 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thptqg 2
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán học
Thể loại Bài tập
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 155,33 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [2] Cho hàm số f (x) = x ln2 x Giá trị f ′(e) bằng A 3 B 2 e C 2e D 2e + 1 Câu 2 [2] Cho hình hộp chữ nhật[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 2. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ b2

a2+ b2+ c2 B. a

b2+ c2

a2+ b2+ c2 C. abc

b2+ c2

a2+ b2+ c2 D. b

a2+ c2

a2+ b2+ c2

Câu 3. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 4. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 5. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 6

a3

√ 3

2a3√ 6

9 .

Câu 6. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

Câu 7. [2] Cho hàm số y= log3(3x + x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 8. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 9. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x −2

2x+ 1. C y= x3− 3x. D y= x4− 2x+ 1.

Câu 10. Khối đa diện đều loại {5; 3} có số mặt

Câu 11. Dãy số nào sau đây có giới hạn là 0?

A. 4

e

!n

3

!n

3

!n

3

!n

Câu 12. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

Trang 2

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).

Các mệnh đề đúng là

Câu 13. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 14. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) trên khoảng (a; b)

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

D Cả ba câu trên đều sai.

Câu 15. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e +2

e. B T = 4 + 2

e. C T = e + 1 D T = e + 3

Câu 16. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A −1

1

2e.

Câu 17. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 18. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = √4

Câu 19. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp tứ giác.

C Một khối chóp tam giác, một khối chóp ngữ giác.

D Hai khối chóp tam giác.

Câu 20. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 21. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 22. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Trang 3

Câu 23. [1] Đạo hàm của làm số y = log x là

A y0 = 1

xln 10. B.

1

0 = ln 10

0 = 1

x.

Câu 24. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√3

a3√3

12 .

Câu 25. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

12 .

Câu 26. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

5

23

13

100.

Câu 27. Bát diện đều thuộc loại

Câu 28. [1] Biết log6 √a= 2 thì log6abằng

Câu 29 Phát biểu nào sau đây là sai?

A lim √1

nk = 0 với k > 1

Câu 30. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −1

2;+∞

!

2

!

2;+∞

!

2

!

Câu 31. Xác định phần ảo của số phức z= (√2+ 3i)2

A 6

Câu 32. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 33. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 34. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 35. Khối đa diện đều loại {3; 3} có số mặt

Câu 36. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

3

a√3

a√3

√ 3

Câu 37. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Trang 4

Câu 38. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0

Câu 39. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

2

11a2

a2√ 7

a2√ 5

16 .

Câu 40 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ

α

aβ = aα C aαbα = (ab)α

D aαβ = (aα

Câu 41. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1

Câu 42. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

2√

3√ 3

a3√ 3

24 .

Câu 43. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 44. Khối đa diện đều loại {3; 4} có số cạnh

Câu 45. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 46 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 47. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h. D V = S h

Câu 48. Khối đa diện đều loại {4; 3} có số cạnh

Câu 49. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 50. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 51. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Trang 5

Câu 52. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

a√57

2a√57

19 .

Câu 53. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 54. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = R C. D = (−∞; 1) D. D = (1; +∞)

Câu 55. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = (0; +∞) C. D = R D. D = R \ {0}

Câu 56. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 57. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

Câu 58. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ 1

2

a2+ b2 D. ab

a2+ b2

Câu 59. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

A (+∞; −∞) B [3;+∞) C (−∞; 1] D [1;+∞)

Câu 60. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 61. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (0; 1).

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số đồng biến trên khoảng (1; 2).

Câu 62 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

Câu 63. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

4a3√3

2a3√3

a3

6 .

Câu 64. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 2x ln 2 C y0 = 2x ln x D y0 = 1

2x ln x.

Câu 65. Khối đa diện đều loại {5; 3} có số cạnh

Câu 66. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?

Trang 6

Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 67. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 3

6 . C V = πa3

√ 3

2 . D V = πa3

√ 6

6 .

Câu 68. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 69 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

Câu 70. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 71. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. " 2

5;+∞

!

3

#

5

#

"

−2

3;+∞

!

Câu 72. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 73. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 6

a3√ 2

6 .

Câu 74. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 3

Câu 75. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 76. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 77. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 78. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Trang 7

Câu 79. Cho lăng trụ đều ABC.ABC có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3√ 3

a3√ 3

a3

3 .

Câu 80. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 81. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√3 B m= ±3 C m= ±√2 D m= ±1

Câu 82. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 83. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

3√

3

2a3

4a3

2a3√ 3

3 .

Câu 84. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 85. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

√ 6

Câu 86. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

3√

6

a3√ 6

3√

3√ 6

3 .

Câu 87 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 2, 25 triệu đồng C 3, 03 triệu đồng D 2, 20 triệu đồng.

Câu 88. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Câu 89. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối lập phương B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.

Câu 90. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

a√2

√ 2

Câu 91. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 92. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 93. Xét hai câu sau

Trang 8

(I) ( f (x)+ g(x))dx = f(x)dx+ g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.

Câu 94. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.

Câu 95. Tập xác định của hàm số f (x)= −x3+ 3x2

− 2 là

Câu 96. Tính lim

x→3

x2− 9

x −3

Câu 97. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

7 .

Câu 98. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1 − 2e 4e+ 2.

Câu 99. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 100. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 101. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 102. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

4.

Câu 103. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Câu 104. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 105. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 106. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 107. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A a3

3

a3√3

a3√3

3 .

Trang 9

Câu 108. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√3

a3√2

2 .

Câu 109. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 110. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là −

√ 3

C Phần thực là

2 − 1, phần ảo là

2, phần ảo là 1 −

√ 3

Câu 111. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 112. Tính limcos n+ sin n

n2+ 1

Câu 113. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 114 Mệnh đề nào sau đây sai?

A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

B.

Z

f(x)dx

!0

= f (x)

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

Câu 115. Cho khối lăng trụ đứng ABC.A0B0C0có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3

√ 3

2 . B V = a3

√ 3

2 . C V = 3a3√

3 D V = 6a3

Câu 116. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 117 Phát biểu nào sau đây là sai?

A lim 1

n = 0

Câu 118. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 119. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 120. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Trang 10

Câu 121. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3

√ 3

3√ 3

9 .

Câu 122. Biểu thức nào sau đây không có nghĩa

Câu 123. Dãy số nào sau đây có giới hạn khác 0?

A. 1

sin n

n+ 1

1

n.

Câu 124. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3

a3√5

a3√15

5 .

Câu 125. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Câu 127. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số đỉnh của khối chóp bằng số cạnh của khối chóp.

C Số đỉnh của khối chóp bằng số mặt của khối chóp.

D Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Câu 128. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi

M, N và P lần lượt là tâm của các mặt bên ABB0

A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

3

√ 3

√ 3

Câu 129. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 130. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

1 2e3

HẾT

Ngày đăng: 09/04/2023, 22:11

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN