1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đê ôn thptqg 1 (304)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thptqg 1 (304)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 147,92 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [12220d 2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ ab Giá trị nhỏ nh[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 2. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3√3

a3√3

12 .

Câu 3. Tính lim 5

n+ 3

Câu 4. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 5. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

A. √2 và 3 B 2 và 3 C 2√2 và 3 D 2 và 2√2

Câu 6. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 7. Khẳng định nào sau đây đúng?

A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng là hình lăng trụ đều.

Câu 8. [1] Biết log6 √a= 2 thì log6abằng

Câu 9. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 10. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√2

3√

3√ 3

2 .

Câu 11. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 12. [2] Đạo hàm của hàm số y = x ln x là

A y0 = ln x − 1 B y0 = 1 + ln x C y0 = 1 − ln x D y0 = x + ln x

Câu 13. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Trang 2

Câu 14. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là 3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.

C Phần thực là −3, phần ảo là 4 D Phần thực là 3, phần ảo là −4.

Câu 15. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 16. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 17. Khối đa diện đều loại {5; 3} có số cạnh

Câu 18. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

2 . C V = πa3

√ 3

3 . D V = πa3

√ 6

6 .

Câu 19. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 6

a3√ 3

a3√ 6

8 .

Câu 20. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 21. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 22 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α B aαβ = (aα)β C. a

α

aβ = aα D aα+β = aα.aβ

Câu 23. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A f (x) có giới hạn hữu hạn khi x → a B lim

x→a + f(x)= lim

x→a − f(x)= +∞

C lim

x→a + f(x)= lim

x→a − f(x)= a

Câu 24. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 25. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 26. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 27. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Trang 3

Câu 28. Tìm giá trị lớn chất của hàm số y= x3

− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 30. Khối đa diện đều loại {4; 3} có số cạnh

Câu 31 Phát biểu nào sau đây là sai?

nk = 0 với k > 1

C lim √1

Câu 32. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm hình chóp tam giác đều, không có tứ diện đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Một tứ diện đều và bốn hình chóp tam giác đều.

D Năm tứ diện đều.

Câu 33. Khối chóp ngũ giác có số cạnh là

Câu 34. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x) − g(x)]= a − b B lim

x→ +∞[ f (x)+ g(x)] = a + b

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞

f(x) g(x) = a

b.

Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

4a3√ 3

8a3√ 3

8a3√ 3

3 .

Câu 36. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 37 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx

!0

Z

k f(x)dx= kZ f(x)dx, k là hằng số

C.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

Câu 38 Hình nào trong các hình sau đây không là khối đa diện?

A Hình lập phương B Hình lăng trụ C Hình tam giác D Hình chóp.

Câu 39. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 40. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4e+ 2. C m=

1+ 2e

4 − 2e. D m= 1 − 2e

4e+ 2.

Câu 41. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Trang 4

Câu 42 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 43. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 44. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 45. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Câu 46. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 47. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

3√ 3

a3

a3

√ 3

2 .

Câu 48. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 2

2√

3√ 3

24 .

Câu 49. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 B xy0 = ey+ 1 C xy0 = −ey+ 1 D xy0 = −ey

− 1

Câu 50. Biểu thức nào sau đây không có nghĩa

√ 2)0

Câu 51. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên khoảng (−2; 1).

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 52. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

15.

Câu 53. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

a√2

a

2a

3 .

Trang 5

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 55. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2;+∞

!

2

!

2;+∞

!

Câu 56. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 2x ln x C y0 = 1

0 = 1

2x ln x.

Câu 57. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 58. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 59. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên đúng B Chỉ có (II) đúng C Cả hai câu trên sai D Chỉ có (I) đúng.

Câu 60. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 61. Hàm số y= x3

− 3x2+ 4 đồng biến trên:

Câu 62 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

xαdx= α + 1xα+1 + C, C là hằng số B.

Z

dx = x + C, C là hằng số

C.

Z

1

xdx= ln |x| + C, C là hằng số D.

Z 0dx = C, C là hằng số

Câu 63. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 64. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 65. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

a

√ 57

√ 57

17 .

Câu 66. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Trang 6

Câu 67. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 68. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1

Câu 69. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 70. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

√ 3

Câu 71. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

7

2.

Câu 72. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 73. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 74. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±√3 C m= ±1 D m= ±3

Câu 75 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

Câu 76 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 77. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 78. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

√ 57

2a√57

19 .

Câu 79. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Trang 7

Câu 80. Hàm số f có nguyên hàm trên K nếu

Câu 81. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 82. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là 4 B Phần thực là −1, phần ảo là −4.

C Phần thực là 4, phần ảo là 1 D Phần thực là 4, phần ảo là −1.

Câu 83. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

2

Câu 84. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 2

a3

√ 6

36 .

Câu 85. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 20, 128 triệu đồng C 50, 7 triệu đồng D 3, 5 triệu đồng.

Câu 86. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 87. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 88. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

e

!n

3

!n

Câu 89. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 90. Khối đa diện đều loại {3; 4} có số mặt

Câu 91. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

2.

Câu 92. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 93. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

3

a3

a3

12.

Câu 94. Khối đa diện đều loại {4; 3} có số mặt

Trang 8

Câu 95. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 96 Phát biểu nào sau đây là sai?

A lim 1

C lim un= c (un = c là hằng số) D lim1

n = 0

Câu 97. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 98. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 99. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 100. Tính lim

x→2

x+ 2

x bằng?

Câu 101. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 102. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 103. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 104. Hàm số nào sau đây không có cực trị

A y = x4− 2x+ 1 B y= x +1

x. C y= x3− 3x D y= x −2

2x+ 1.

Câu 105. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 3

2a3√ 3

3√ 3

Câu 106. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 107. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Câu 108. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

2a√3

a√3

3 .

Câu 109. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Trang 9

Câu 110. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

1

sin n

n .

Câu 111. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 112. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = n3− 3n

n+ 1 . C un = 6

5

!n D un = n2− 4n

Câu 113. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Trục thực.

B Hai đường phân giác y= x và y = −x của các góc tọa độ

C Trục ảo.

D Đường phân giác góc phần tư thứ nhất.

Câu 114. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 115. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

Câu 116. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 117. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

√ 2

Câu 118. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 119. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 120 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 2, 20 triệu đồng C 2, 25 triệu đồng D 3, 03 triệu đồng.

Câu 121. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Trang 10

Câu 122. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3

4a3

4a3

√ 3

2a3

√ 3

3 .

Câu 123. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 124. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 0

2.

Câu 125. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 126. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 127. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

√ 6

a√6

6 .

Câu 128. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 129. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = n2− 3n

n2 C un = 1 − 2n

5n+ n2 D un = n2− 2

5n − 3n2

Câu 130. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

1

2e3

HẾT

Ngày đăng: 09/04/2023, 21:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN