1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra thpt môn toán (949)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ
Định dạng
Số trang 4
Dung lượng 124,16 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;−3;−1), N(2;−1; 1) Tìm tọa đ[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc

trục tung sao cho tam giác MNEcân tại E

A (−2; 0; 0) B (0; −2; 0) C (0; 6; 0) D (0; 2; 0).

Câu 2 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

A. 4

Câu 3 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 3

3πR3 D 4πR3

Câu 4 Bất đẳng thức nào sau đây là đúng?

A (√3+ 1)π > (√3+ 1)e B 3−e > 2−e

Câu 5 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1

x là đúng?

A Hàm số nghịch biến trên (0;+∞) B Hàm số nghịch biến trên R.

C Hàm số đồng biến trên R D Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)

Câu 6 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Câu 7 Hàm số nào sau đây không có cực trị?

Câu 8 Cho lăng trụ đều ABC.A′B′C′ có đáy bằng a, AA′ = 4√3a Thể tích khối lăng trụ đã cho là:

Câu 9 Nếu

6

R

1

f(x)= 2 vàR6

1

g(x)= −4 thìR6

1

( f (x)+ g(x)) bằng

Câu 10 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1 = 4S2thì giá trị k thuộc khoảng nào sau đây?

A (3, 3; 3, 5)· B (3, 7; 3, 9)· C (3, 1; 3, 3)· D (3, 5; 3, 7)·.

Câu 11 Tính thể tích V của khối tròn xoay khi quay hình phẳng giới hạn bởi đồ thị (C) : y = 4 − x2 và trục hoành quanh trục Ox

A V = 22π

2 .

Câu 12 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a

√ 2

2 Tính góc giữa mặt bên (S DC) và mặt đáy

Trang 2

Câu 13 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là

Câu 14 Cho hai số phức u, v thỏa mãn

u

= v

= 10 và

3u − 4v

= 50 Tìm giá trị lớn nhất của biểu thức

4u+ 3v − 8 + 6i

Câu 15 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 16 Trên mặt phẳng tọa độ, cho M(2; 3) là điểm biểu diễn số phức z Phần thực của z bằng

Câu 17 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 18 Với mọi số phức z, ta có |z+ 1|2bằng

A z2+ 2z + 1 B z · z+ z + z + 1 C |z|2+ 2|z| + 1 D z+ z + 1

Câu 19 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

Câu 20 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?

Câu 21 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 22 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 23 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √48 B |w|= √85 C |w|= 6√3 D |w|= 4√5

Câu 24 Số phức z= 4+ 2i + i2017

2 − i có tổng phần thực và phần ảo là

Câu 25 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 26 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn

z1

+

z2

= 2?

Câu 27 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln(6a2) B ln3

2

3.

Câu 28 Cho hàm số y= f (x) có đạo hàm f′

(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 29 Cho cấp số nhân (un) với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

A. 1

1

7

Trang 3

Câu 30 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 11

1

Câu 31 Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2+ 2x và

y= 0 quanh trục Ox bằng

A. 16π

16π

16

16

9 .

Câu 32 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 34 Cho số phức z , 0 sao cho z không phải là số thực và w = z

1+ z2 là số thực Tính giá trị biểu thức |z|

1+ |z|2 bằng?

A. 1

√ 2

1

2.

Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 36 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 37 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 .

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 39 Gọi z1; z2là hai nghiệm của phương trình z2− z+ 2 = 0.Phần thực của số phức

[(i − z1)(i − z2)]2017bằng bao nhiêu?

Câu 40 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 1 B |w|min= 2 C |w|min = 3

2. D |w|min = 1

2.

Câu 41 Cho số phức z thỏa mãn1 −

√ 5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 3

2 < |z| < 3 B 3 < |z| < 5 C. 1

2 < |z| < 2 D. 5

2 < |z| < 4

Câu 42 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 3

√ 6

√ 2

√ 2

√ 5

5 .

Trang 4

Câu 43 Thể tích khối lập phương có cạnh 3a là:

Câu 44 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 45 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A. 1

√ 3

√ 3

√ 15

5 .

Câu 46 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

30

Câu 47 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A −1 ≤ m < 0 B −1 ≤ m ≤ 0 C m < −1 D m > 1.

Câu 48 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (−2; 3; 1) B.→−n = (2; −3; 4) C.→−n = (2; 3; −4) D.→−n = (−2; 3; 4)

Câu 49 Với a là số thực dương tùy ý, log5(5a) bằng

Câu 50 Biết

3

R

2

f(x)dx= 3 vàR3

2

g(x)dx= 1 Khi đóR3

2

[ f (x)+ g(x)]dx bằng

HẾT

Ngày đăng: 09/04/2023, 20:24