1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra thpt môn toán (799)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông Mễ Nhiêu
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhiêu
Định dạng
Số trang 4
Dung lượng 124,61 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng

Câu 2 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < π thì y > 1 − 4π2 B Nếu 0 < x < 1 thì y < −3.

C Nếux > 2 thìy < −15 D Nếux= 1 thì y = −3

Câu 3 Tìm tất cả các giá trị của tham số m để hàm số y= xe−x+ mx đồng biến trên R

A m > 2e B m ≥ e−2 C m > e2 D m > 2.

Câu 4 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?

Câu 5 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ∈ (0; 2) B m ≥ 0 C −1 < m < 7

2. D m ∈ (−1; 2).

Câu 6 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 4

Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?

Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; 0; 5) B (0; −5; 0) C (0; 1; 0) D (0; 5; 0).

Câu 9 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x +2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Câu 10 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

√ 2

a

2.

Câu 11 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB = a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

A. 2a

3

3

3

Câu 12 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và

−→

nQ Biết cosin góc giữa hai vectơ−→nP và−n→Qbằng −

√ 3

2 Góc giữa hai mặt phẳng (P) và (Q) bằng.

Trang 2

Câu 13 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng

x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?

A (3, 1; 3, 3)· B (3, 5; 3, 7)· C (3, 3; 3, 5)· D (3, 7; 3, 9)·.

Câu 14 Cho hàm số y= f (x) có đồ thị của y = f′

(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 15 Cho cấp số nhân (un) với u1= 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 16 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?

A f (x)= 3 cos 3x B f (x)= −cos 3x

3 . C f (x)= cos 3x

3 . D f (x)= −3 cos 3x

Câu 17 Cho z là một số phức Xét các mệnh đề sau :

I Nếu z= z thì z là số thực

II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z

Câu 18 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 19 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là

Câu 20 Cho số phức z1= 3 − 2i Khi đó số phức w = 2z − 3z là

Câu 21 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực không âm B Mô-đun của số phức z là số phức.

C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực dương.

Câu 22 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 23 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2

A |z1+ z2|= √5 B |z1+ z2|= 5 C |z1+ z2|= 1 D |z1+ z2|= √13

Câu 24 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009 B (1+ i)2018 = −21009 C (1+ i)2018 = 21009i D (1+ i)2018 = −21009i

Câu 25 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 26 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 27 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 28 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng

Trang 3

Câu 29 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 30 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

11

3 .

Câu 31 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x) bằng

A. 3

3

4.

Câu 32 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 33 Tiệm cận ngang của đồ thị hàm số y= 2x+ 1

3x − 1 là đường thẳng có phương trình:

A y= 1

3.

Câu 34 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 5

2 < |z| < 4 B 3 < |z| < 5 C. 3

2 < |z| < 3 D. 1

2 < |z| < 2

Câu 35 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 2√5 B P= 2016 C P = −2016 D P = 1

Câu 36 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?

A. 1

3

2.

Câu 37 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2

1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?

A. 5

2 < |z| < 7

3

2 < |z| < 2 C 2 < |z| < 5

1

2 < |z| < 3

2.

Câu 38 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2 B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2

√ 2

3 .

Câu 39 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 0;1

4

!

4;

5 4

!

4;+∞

!

2;

9 4

!

Câu 41 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 4 B |z|= 1

Trang 4

Câu 42 Cho z1, z2, z3thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax = 4

√ 5

√ 2

√ 2

√ 6

2 .

Câu 43 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 44 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

C −x+ 2y + 2z + 4 = 0 D 3x − 4y+ 6z + 34 = 0

Câu 45 Tìm nguyên hàm của hàm số f (x)= cos 3x

C.R cos 3xdx= −sin 3x

Câu 46 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt

A m > −4 B −4 < m < −3 C −4 < m ≤ −3 D −4 ≤ m < −3.

Câu 47 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

A x= −2 + 2ty = −3tz = 1 + t B x= 4 + 2ty = −3tz = 2 + t

C x= 2 + 2ty = −3tz = −1 + t D x= −2 + 4ty = −6tz = 1 + 2t

Câu 48 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là

Câu 49 Cho hàm số y= f (x) xác định và liên tục trên đoạn có [−2; 2] và có đồ thị là đường cong trong hình vẽ bên Điểm cực tiểu của đồ thị hàm số y= f (x) là

Câu 50 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M sao cho

3MA2+ 2MB2− MC2đạt giá trị nhỏ nhất

A M(3

4;

1

3

4;

1

3

4;

1

3

4;

3

2; −1).

HẾT

Ngày đăng: 09/04/2023, 20:24