Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị? A y = x4 + 3x2 + 2 B y = x3 − 6x2 +[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị?
Câu 2 Bất đẳng thức nào sau đây là đúng?
C (√3 − 1)e < (√3 − 1)π D (√3+ 1)π > (√3+ 1)e
Câu 3 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
3 −
ln 2
2 . B F(
π
4)= π
4 −
ln 2
2 . C F(
π
4)= π
4 + ln 2
2 . D F(
π
4)= π
3 + ln 2
2 .
Câu 4 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A ln x > ln y B log 1
a
x> log1
a
y C log x > log y D logax> logay
Câu 5 Cho lăng trụ đều ABC.A′
B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A. √a
√ 5a
2a
√
√ 3a
2 .
Câu 6 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; 21; 21) B C(8;21
Câu 7 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 8 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 9 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh
đươc chon tao thanh tam giac đêu la
A P= 1
220.
Câu 10 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?
A f (x)= −cos 3x
3 . B f (x)= −3 cos 3x C f (x)= cos 3x
3 . D f (x)= 3 cos 3x
Câu 11 Cho hàm số f (x) liên tục trên R và
2
R
0
( f (x)+ 2x) = 5 TínhR2
0
f(x)
Câu 12 Cho hàm số y= ax+ b
cx+ d có đồ thị là đường cong trong hình vẽ bên Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Trang 2Câu 13 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Câu 14 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y+ 5z − 2 = 0 Điểm nào dưới đây thuộc mặt phẳng (P)?
A M(0 ; 0 ; 2) B P(4 ; −1 ; 3) C Q(4 ; 4 ; 2) D N(1 ; 1 ; 7).
Câu 15 Cho số phức zthỏa mãn
z
i+ 2
= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)
Câu 16 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng
Câu 17 Với mọi số phức z, ta có |z+ 1|2bằng
A |z|2+ 2|z| + 1 B z+ z + 1 C z · z+ z + z + 1 D z2+ 2z + 1
Câu 18 Tìm số phức liên hợp của số phức z= i(3i + 1)
Câu 19 Số phức z= 1+ i
1 − i
!2016
+ 1 − i
1+ i
!2018
bằng
Câu 20 Cho số phức z= a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A z − z = 2a B |z2|= |z|2 C z · z= a2− b2 D z+ z = 2bi
Câu 21 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 22 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= √5 B |z1+ z2|= 5 C |z1+ z2|= 1 D |z1+ z2|= √13
Câu 23 Cho số phức z= (m − 1) + (m + 2)i với m ∈ R Tập hợp tất các giá trị của m để |z| ≤ √5 là
A −1 ≤ m ≤ 0 B m ≥ 0 hoặc m ≤ −1 C 0 ≤ m ≤ 1 D m ≥ 1 hoặc m ≤ 0 Câu 24 Cho z là một số phức Xét các mệnh đề sau :
I Nếu z= z thì z là số thực
II Mô-đun của z bằng độ dài đoạnOM, với O là gốc tọa độ và M là điểm biểu diễn của số phức z III |z|= √z · z
Câu 25 Cho các mệnh đề sau:
I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y
II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)
III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy
IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y
Câu 26 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n1 = (−1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n2 = (1; −1; 1) D.→−n3 = (1; 1; 1)
Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn
z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là
Câu 28 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x3− 3x − 5 B y= x2− 4x+ 1 C y= x4− 3x2+ 2 D y= x −3
x −1.
Trang 3Câu 29 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 30 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 31 NếuR2
0 f(x)= 4 thì R2
0[1
2f(x) − 2] bằng
Câu 32 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
3.
Câu 33 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 34 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 35 (Đặng Thức Hứa – Nghệ An) Cho các số phức z1 , 0, z2 , 0 thỏa mãn điều kiện2
z1 + 1
z2 = 1
z1+ z2
Tính giá trị biểu thức P=
z1
z2
+
z2
z1
A. 3
√
2
√
Câu 36 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
3
2.
Câu 37 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?
A P= (|z| − 2)2 B P=
|z|2− 22 C P = (|z| − 4)2 D P =
|z|2− 42
Câu 39 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A 2 < |z| < 5
5
2 < |z| < 7
1
2 < |z| < 3
3
2 < |z| < 2
Câu 40 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
2.
Câu 41 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|
Câu 42 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =
√ 2
2 và điểm A trong hình vẽ bên là điểm biểu diễn z
Biết rằng điểm biểu diễn số phức ω = 1
iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn
số phức ω là
Trang 4Câu 43 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x3− 3x2+ 2 B y= −x4+ 2x2+ 2 C y= −x3+ 3x2+ 2 D y= x4− 2x2+ 2
Câu 44 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A A(−1; 2; 0) B (1; −2; 0) C (3; −1; −1) D (−1; −3; 1).
Câu 45. R 6x5dxbằng
6x
6+ C
Câu 46 Thể tích khối lập phương có cạnh 3a là:
Câu 47 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x − 4)2+ (y + 8)2 = 20 B (x+ 4)2+ (y − 8)2 = 20
C (x+ 4)2+ (y − 8)2 = 2√5 D (x − 4)2+ (y + 8)2 = 2√5
Câu 48 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là
30
Câu 49 Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, cạnh AB = 2a, BC = 2a√2, OD=
a√3 Tam giác SAB nằm trên mặt phẳng vuông góc với mặt phẳng đáy Gọi O là giao điểm của AC và
BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB)
Câu 50 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (2; −3; 4) B.→−n = (−2; 3; 1) C.→−n = (−2; 3; 4) D.→−n = (2; 3; −4)
HẾT