1. Trang chủ
  2. » Thể loại khác

Đề kiểm tra thpt môn toán (712)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông Mễ Nhiêu
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Mễ Nhiêu
Định dạng
Số trang 5
Dung lượng 125,9 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y =[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2

A m ∈ (0; 2) B m ∈ (−1; 2) C −1 < m < 7

2. D m ≥ 0.

Câu 2 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A logax> logay B log 1

a

x> log1

a

y C log x > log y D ln x > ln y.

Câu 3 Biết F(x) là một nguyên hàm của hàm số f (x)= x

cos2x và F(

π

3)= √π

3 Tìm F(

π

4)

A F(π

4)= π

4 + ln 2

2 . B F(

π

4)= π

3 + ln 2

2 . C F(

π

4)= π

3 −

ln 2

2 . D F(

π

4)= π

4 −

ln 2

2 .

Câu 4 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 5 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A bc > 0 B ad > 0 C ab < 0 D ac < 0.

Câu 6 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?

A ea> eb

2 > b√2 C a

3 < b−√3 D. √5

a< √5

b

Câu 7 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng

A 2π√l2− R2 B π√l2− R2 C πRl D 2πRl.

Câu 8 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; 0; 5) B (0; 1; 0) C (0; 5; 0) D (0; −5; 0).

Câu 9 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính

e 2

R 1

f(ln x) 2x .

Câu 10 Cho số phức z1 = 3 − 4i; z2 = 1 − i, phần ảo của số phức z1.z2bằng

Câu 11 Cho hình chóp đều S ABCD có cạnh đáy bằng a Tính khoảng cách từ điểm A đến mặt phẳng

(S BD) theo a

√ 2

2.

Câu 12 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a

√ 2

2 Tính góc giữa mặt bên (S DC) và mặt đáy

Câu 13 Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có hai vectơ pháp tuyến là−→nP và

−→

nQ Biết cosin góc giữa hai vectơ−→nP và−nQ→bằng −

√ 3

2 Góc giữa hai mặt phẳng (P) và (Q) bằng.

Trang 2

Câu 14 Bất phương trình log2021(x − 1) ≤ 0 có bao nhiêu nghiệm nguyên?

Câu 15 Tập nghiệm của bất phương trình 52x+3 > −1 là

Câu 16 Đường thẳng y= 2 là tiệm cận ngang của đồ thị nào dưới đây?

A y= −2x+ 3

2x − 2

1+ x

1 − 2x.

Câu 17 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

A |z|= 4 B z là số thuần ảo C z= z D z= 1

z.

Câu 18 Cho số phức z thỏa mãn z(1+ 3i) = 17 + i Khi đó mô-đun của số phức w = 6z − 25i là

Câu 19 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là 3 và phần ảo là 2i B Phần thực là3 và phần ảo là 2.

C Phần thực là −3 và phần ảo là−2 D Phần thực là−3 và phần ảo là −2i.

Câu 20 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= −21009i B (1+ i)2018 = 21009 C (1+ i)2018 = −21009 D (1+ i)2018 = 21009i

Câu 21 Với mọi số phức z, ta có |z+ 1|2bằng

A z+ z + 1 B z · z+ z + z + 1 C z2+ 2z + 1 D |z|2+ 2|z| + 1

Câu 22 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số phức.

C Mô-đun của số phức z là số thực không âm D Mô-đun của số phức z là số thực.

Câu 23 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 24 Những số nào sau đây vừa là số thực và vừa là số ảo?

A 0 và 1 B Không có số nào C C.Truehỉ có số 0 D Chỉ có số 1.

Câu 25 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= 6√3 B |w|= √85 C |w|= 4√5 D |w|= √48

Câu 26 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x −3

x −1. B y= x2− 4x+ 1 C y= x4− 3x2+ 2 D y= x3− 3x − 5

Câu 27 Cho hàm số y= f (x) có đạo hàm f′

(x) = (x − 2)2

(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 28 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

A.R f(x)= −sinx + x2

2 + C

Câu 29 Cho khối nón có đỉnh S , chiều cao bằng 8 và thể tích bằng 800π

3 Gọi A và B là hai điểm thuộc đường tròn đáy sao cho AB= 12, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (S AB) bằng

24

5 .

Trang 3

Câu 30 Cho khối lăng trụ đứng ABC · A

B′C′ có đáy ABC là tam giác vuông cân tại B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 6

3 a, thể tích khối lăng trụ đã cho bằng

A.

2

4 a

√ 2

6 a

√ 2

2 a

3

Câu 31 Cho hình nón có đường kính đáy 2r và độ dài đường sinh l Diện tích xung quanh của hình nón

đã cho bằng

3πrl2 D πrl.

Câu 32 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

11

3 .

Câu 33 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= lnx B F′(x)= 1

′ (x)= 2

x2 D F′(x)= −1

x2

Câu 34 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 35 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 37 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức

P= |z1+ z2|

√ 3

√ 2

2 .

Câu 38 Cho số phức z thỏa mãn z không phải là số thực và ω= z

2+ z2 là số thực Giá trị lớn nhất của biểu thức M = |z + 1 − i| là

Câu 39 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 1

Câu 40 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 4

√ 5

√ 2

√ 2

√ 6

2 .

Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2

97

√ 85

Câu 42 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Trang 4

Câu 43 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính

xác suất sao cho có ít nhất một quả màu trắng

A. 8

209

1

1

210.

Câu 44. R 6x5dxbằng

6x

Câu 45 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

2(x

2+ 1)

1

2 B 3x(x2+ 1)

1

4x

−1

2(2x)

1

2

Câu 46 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M

Câu 47 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R 0

f(x) bằng

A. π2+ 16π − 16

Câu 48 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 49 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x − 4)2+ (y + 8)2 = 2√5 B (x+ 4)2+ (y − 8)2 = 2√5

C (x − 4)2+ (y + 8)2 = 20 D (x+ 4)2+ (y − 8)2 = 20

Câu 50 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

C −x+ 2y + 2z + 4 = 0 D x − 2y − 2z − 4= 0

Trang 5

HẾT

Ngày đăng: 09/04/2023, 20:15