Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u (2;−2; 1), kết luận nào sau[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?
A |→−u | = 9 B |→−u |= √3 C |→−u |= 3
D |→−u |= 1
Câu 2 Đồ thị hàm số y= (√3 − 1)x có dạng nào trong các hình H1, H2, H3, H4 sau đây?
Câu 3 Cho lăng trụ đều ABC.A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cách giữa hai đường thẳng AB′ và BC′
A. √2a
5
5
√ 3a
√ 5a
3 .
Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một véc
tơ pháp tuyến của (P) là
A (−2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (2; −1; 2).
Câu 5 Cho số thực dươngm Tính I = Rm
0
dx
x2+ 3x + 2 theo m?
A I = ln( m+ 2
2m+ 2). B I = ln(
m+ 1
m+ 2). C I = ln(
m+ 2
m+ 1). D I = ln(
2m+ 2
m+ 2 ).
Câu 6 Bất đẳng thức nào sau đây là đúng?
C (√3+ 1)π > (√3+ 1)e D 3−e > 2−e
Câu 7 Kết luận nào sau đây về tính đơn điệu của hàm số y= 1
x là đúng?
A Hàm số đồng biến trên R B Hàm số nghịch biến trên (0;+∞)
C Hàm số nghịch biến trên R D Hàm số đồng biến trên (−∞; 0) ∪ (0;+∞)
Câu 8 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x
A S = 1
2.
Câu 9 Cho hàm số f (x)=
− 1
3x
2(2m+ 3)x2− (m2+ 3m)x +2
3
Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?
Câu 10 Điểm M trong hình vẽ bên dưới biểu thị cho số phức Khi đó số phức w= 4z là
Câu 11 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
2F(0) − G(0)= 1, F(2) − 2G(2) = 4 và F(1) − G(1) = −1 Tính e
2
R
1
f(ln x)
Câu 12 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực đại của đồ thị hàm số đã cho có tọa độ là
Trang 2Câu 13 Cho hình nón đỉnh S , đường tròn đáy tâm Ovà góc ở đỉnh bằng 120 Một mặt phẳng đi qua
Scắt hình nón theo thiết diện là tam giác S AB Biết khoảng cách giữa hai đường thẳng ABvà S Obằng 3, diện tích xung quanh của hình nón đã cho bằng 18π√3 Tính diện tích tam giác S AB
Câu 14 Choa,b là các số dương, a , 1sao cho logab= 2, giá trị của loga(a3b) bằng
A. 3
Câu 15 Cho hàm số y= f (x) có bảng biến thiên như sau
Hàm số y= f (x) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu 16 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?
Câu 17 Số phức z= 4+ 2i + i2017
2 − i có tổng phần thực và phần ảo là
Câu 18 Cho hai số phức z1 = 1 + i và z2 = 2 − 3i Tính mô-đun của số phức z1+ z2
A |z1+ z2|= 1 B |z1+ z2|= √13 C |z1+ z2|= √5 D |z1+ z2|= 5
Câu 19 Trong các kết luận sau, kết luận nào sai
A Mô-đun của số phức z là số thực B Mô-đun của số phức z là số thực không âm.
C Mô-đun của số phức z là số phức D Mô-đun của số phức z là số thực dương.
Câu 20 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?
Câu 21 Cho số phức z1= 3 + 2i, z2 = 2 − i Giá trị của biểu thức |z1+ z1z2|là
Câu 22 Mô-đun của số phức z= (1+ i)(2 − i)
Câu 23 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1
A |z|= √34 B |z|= 34 C |z|=
√ 34
√ 34
Câu 24 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?
Câu 25 Cho số phức z thỏa (1 − 2i)z+ (1 + 3i)2= 5i Khi đó điểm nào sau đây biểu diễn số phức z ?
Câu 26 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên
Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
Câu 27 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị?
Câu 28 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = − 1
x.
Trang 3Câu 29 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
Câu 30 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên)
Thể tích khối chóp đã cho bằng
Câu 31 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 32 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
11
Câu 33 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?
C.R f(x)= sinx + x2
2 + C
Câu 34 Cho số phức z , 0 sao cho z không phải là số thực và w = z
1+ z2 là số thực Tính giá trị biểu thức |z|
1+ |z|2 bằng?
A. 1
√ 2
1
5.
Câu 35 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức
S = a + 2b
Câu 36 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i
A |z|= 1
Câu 37 Cho a, b, c là các số thực và z= −1
2+
√ 3
2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng
C a2+ b2+ c2+ ab + bc + ca D a2+ b2+ c2− ab − bc − ca
Câu 38 Cho số phức z (không phải là số thực, không phải là số ảo) và thỏa mãn 1+ z + z2
1 − z+ z2 là số thực Khi đó mệnh đề nào sau đây đúng?
A. 5
2 < |z| < 7
1
2 < |z| < 3
3
2 < |z| < 2 D 2 < |z| < 5
2.
Câu 39 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2
√ 2
3 Mệnh đề nào dưới đây đúng?
A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2
√ 2
3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 2√2
C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 8
3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1
Câu 40 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=
√ 2
2 Giá trị lớn nhất của biểu thức
P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?
A Pmax= 10
√ 2
√ 5
√ 6
√ 2
3 .
Trang 4Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 1
2;
9
4
!
4;
5 4
!
4
!
4;+∞
!
Câu 42 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i
2+ iz Mệnh đề nào sau đây đúng?
Câu 43 Cho hàm số y= f (x) có đồ thị như hình vẽ dưới đây Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt
A −4 < m ≤ −3 B −4 ≤ m < −3 C m > −4 D −4 < m < −3.
Câu 44 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
−1
16.
Câu 45 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A −1 ≤ m ≤ 0 B m < −1 C −1 ≤ m < 0 D m > 1.
Câu 46 Đường thẳng (∆) : x −1
−1 không đi qua điểm nào dưới đây?
A A(−1; 2; 0) B (3; −1; −1) C (1; −2; 0) D (−1; −3; 1).
Câu 47 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 48 Cho hàm số y= f (x) có đạo hàm f′
(x)= x2− 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến trên khoảng
Câu 49 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (−2; 3; 4) B.→−n = (2; 3; −4) C.→−n = (2; −3; 4) D.→−n = (−2; 3; 1)
Câu 50 Tính đạo hàm của hàm số y= 2023x
A y′ = 2023x
ln x C y′ = x.2023x−1 D y′ = 2023x
ln 2023
Trang 5HẾT