1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (188)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,24 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Gọi F(x) là một nguyên hàm của hàm y = ln x x √ ln2 x + 1[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 1

1

8

8

9.

Câu 2. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).

Câu 3. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A= a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

√ 6

3 .

Câu 4. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

Câu 5. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

√ 2

Câu 6. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 7. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Một hình chóp tứ giác và một hình chóp ngũ giác.

D Hai hình chóp tam giác.

Câu 8. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 9. Tính lim

x→3

x2− 9

x −3

Câu 10. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a

√ 39

a

√ 39

a

√ 39

9 .

Câu 11. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3

− z

√ 3

2 . D P= −1+ i

√ 3

Câu 12. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A −2 < m < −1 B (−∞; −2) ∪ (−1; +∞) C (−∞; −2]∪[−1; +∞) D −2 ≤ m ≤ −1.

Trang 2

Câu 13. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2

và y= x

A. 11

9

Câu 14. Dãy số nào sau đây có giới hạn khác 0?

A. n+ 1

1

sin n

1

n.

Câu 15. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 16. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 2

a3√3

3√ 3

Câu 17. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 18. Khẳng định nào sau đây đúng?

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng là hình lăng trụ đều.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

Câu 19. Cho I = Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 20. Tính limcos n+ sin n

n2+ 1

Câu 21. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 22. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 8a

a

5a

2a

9 .

Câu 23 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Trang 3

Câu 24. Khối đa diện đều loại {3; 5} có số cạnh

Câu 25. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 26. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= − loga2 C log2a= loga2 D log2a= 1

loga2.

Câu 27. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 28. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 5 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Câu 29. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là 4, phần ảo là −1 B Phần thực là −1, phần ảo là −4.

C Phần thực là 4, phần ảo là 1 D Phần thực là −1, phần ảo là 4.

Câu 30. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 31. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 32. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 33. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

Câu 34. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√ 3

a3

4a3√ 3

3 .

Câu 35. [1] Giá trị của biểu thức 9log3 12bằng

Câu 36. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 37. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 23

1079

1728

1637

4913.

Câu 38. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 39. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (−∞; 0).

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).

Trang 4

Câu 40. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

a2

√ 5

a2

√ 2

11a2

32 .

Câu 41. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 42. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 43. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 44. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 45. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

3√

3√ 15

a3

√ 6

3 .

Câu 46. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 47. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 48. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 49. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 50. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 51. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 52. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

2016

4035

2018.

Câu 53. Khối lập phương thuộc loại

Câu 54. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x

lần lượt là

A. √2 và 3 B 2 và 2√2 C 2√2 và 3 D 2 và 3.

Trang 5

Câu 55. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45 Tính thể tích của khối chóp S ABC theo a

A. a

3

a3

√ 15

a3

√ 15

a3

√ 5

25 .

Câu 56. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

40

50.(3)10

10

50.(3)40

20

50.(3)30

20

50.(3)20

450

Câu 57. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

2a3√3

3√ 3

Câu 59. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1

e.

Câu 60 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 61. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 62. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

B Hàm số nghịch biến trên khoảng (−2; 1).

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 63. [2] Cho hàm số f (x)= x ln2

x Giá trị f0(e) bằng

Câu 64. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞

f(x)

g(x) = a

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞[ f (x)+ g(x)] = a + b

Câu 65. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

2 .

Trang 6

Câu 66. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

Câu 67. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 68. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A a

√ 57

a

√ 57

a

√ 57

19 .

Câu 69. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 70. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 71. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 72. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 73. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3√

3

2a3

4a3

4a3√ 3

3 .

Câu 74. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 4a

3√

6

2a3√ 6

a3√ 6

3√ 6

Câu 75. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 76. Tính lim n −1

n2+ 2

Câu 77. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 78. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2− 2; m= 1 B M = e2− 2; m = e−2+ 2

C M = e−2+ 2; m = 1 D M = e−2+ 1; m = 1

Câu 79. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

a3√3

3√ 3

6 .

Trang 7

Câu 80. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3

Câu 81. Khối chóp ngũ giác có số cạnh là

Câu 82. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 83. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

Câu 84. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 85. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 86. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 87. Tính lim

x→2

x+ 2

x bằng?

Câu 88. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 20, 128 triệu đồng C 3, 5 triệu đồng D 50, 7 triệu đồng.

Câu 89. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1

2x3ln 10. D y

0 = 1 − 2 ln 2x

x3ln 10 .

Câu 90. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 91. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 3

a3√ 6

a3√ 6

24 .

Câu 92. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 2; −1) B ~u= (1; 0; 2) C ~u= (3; 4; −4) D ~u= (2; 1; 6)

Câu 93. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 2

11 − 3

3 . D Pmin= 9

11 − 19

Câu 94. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Trang 8

Câu 95. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) xác định trên K.

Câu 96. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 20 mặt đều.

Câu 97. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4. B (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

C (x − 3)2+ (y − 1)2+ (z − 3)2= 9

2+ (y + 1)2+ (z + 3)2= 9

4.

Câu 98. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 99. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

a√57

a√57

√ 57

Câu 100. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

Câu 101. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 1

1

9

2

5.

Câu 102. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 103. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; 0) và (1; +∞) B (0; 1) C (−∞; −1) và (0; +∞) D (−1; 0).

Câu 104. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; −3; −3) B A0(−3; −3; 3) C A0(−3; 3; 3) D A0(−3; 3; 1)

Câu 105. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 106. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 4

3, 38 C 8, 16, 32 D 2, 4, 8.

Câu 107. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 3

9

Câu 108. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 9

Câu 109 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C B.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số

C.

Z

f(x)dx

!0

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C

Câu 110. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 111. Khối đa diện đều loại {3; 3} có số mặt

Câu 112. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 113. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

Câu 114. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

3

a3

a3

12.

Câu 115. Hàm số y= x +1

x có giá trị cực đại là

Câu 116. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 117. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = log√

2x B y = logaxtrong đó a= √3 − 2

4 x

Câu 118. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 119. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 120. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

3

1

2.

Câu 121. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2− 3n

n2 C un = n2− 2

5n − 3n2 D un = n2+ n + 1

(n+ 1)2

Câu 122 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 25 triệu đồng B 2, 20 triệu đồng C 2, 22 triệu đồng D 3, 03 triệu đồng.

Trang 10

Câu 123. Khối đa diện đều loại {3; 3} có số cạnh

Câu 124. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 125. [12212d] Số nghiệm của phương trình 2x−3.3x−2

− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 126. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

2

e2

Câu 127. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 128. Biểu thức nào sau đây không có nghĩa

A. −3

Câu 129. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

C Câu (III) sai D Câu (II) sai.

Câu 130. Khối đa diện đều loại {3; 4} có số mặt

HẾT

Ngày đăng: 09/04/2023, 18:22

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN