1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (632)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 149,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Giá trị của biểu thức log 1 3√10 bằng A 1 3 B − 1 3 C[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 11 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

Câu 2. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2− 3n

n2 C un = n2− 2

5n − 3n2 D un = n2+ n + 1

(n+ 1)2

Câu 3. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

3

a√6

a√6

a√6

7 .

Câu 4. [1] Tính lim 1 − 2n

3n+ 1 bằng?

A −2

1

2

3.

Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

2

2

a3

√ 3

6 .

Câu 6. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Trục thực.

C Trục ảo.

D Đường phân giác góc phần tư thứ nhất.

Câu 7. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 8. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên khoảng (−2; 1).

B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 9. Tính lim 2n

3n6+ n4

Câu 10. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

5

a3√3

a3

√ 5

a3

√ 5

12 .

Câu 12. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Trang 2

Câu 13. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

3.

Câu 14. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

9 .

Câu 15. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

√ 3

Câu 16. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 17. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m > 1

1

1

1

4.

Câu 18. [3-12214d] Với giá trị nào của m thì phương trình 1

Câu 19. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 20. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 21. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 22. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 23. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A −3 − 4

Câu 24. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x

Câu 25. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 26. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Trang 3

Câu 27 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Câu 28. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 29. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 30. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 31. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

6

a3

√ 3

a3

√ 6

a3

√ 6

48 .

Câu 32. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 33. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 34. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 35. Khối đa diện đều loại {3; 4} có số mặt

Câu 36. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1 D f0(0)= 1

ln 10.

Câu 37. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 38. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Trang 4

Câu 39. Mặt phẳng (ABC ) chia khối lăng trụ ABC.A BC thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tứ giác.

C Hai khối chóp tam giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 40. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos2x

lần lượt là

A 2 và 2

2 và 3 D 2 và 3.

Câu 41. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1

9

!x

Câu 42. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Một tứ diện đều và bốn hình chóp tam giác đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Năm hình chóp tam giác đều, không có tứ diện đều.

D Năm tứ diện đều.

Câu 43. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

loga2. B log2a= 1

log2a. C log2a= − loga2 D log2a= loga2

Câu 44. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3

− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng √24

A m = −3 B −3 ≤ m ≤ 4 C m= 4 D m= −3, m = 4

Câu 45. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 46. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a

√ 6

a

√ 6

√ 6

Câu 47. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

a

√ 57

2a

√ 57

√ 57

Câu 48. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

6

4a3

√ 6

a3

√ 6

3 .

Câu 49 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z 1

xdx= ln |x| + C, C là hằng số

C.

Z

xαdx= α + 1xα+1 + C, C là hằng số D.

Z

dx = x + C, C là hằng số

Câu 50 Phát biểu nào sau đây là sai?

A lim 1

n = 0

Trang 5

Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 52. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

2

a3

√ 6

a3

√ 6

a3

√ 6

18 .

Câu 53. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối lập phương.

Câu 54. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 55. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 56. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 57. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

√ 2

√ 2

2 .

Câu 58. Dãy số nào có giới hạn bằng 0?

A un= n3− 3n

n+ 1 . B un = n2− 4n C un = 6

5

!n

D un = −2

3

!n

Câu 59. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 60. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = (−∞; 1) C. D = R D. D = (1; +∞)

Câu 61. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3

a3√ 3

a3√ 3

a3

4 .

Câu 62. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; −3; −3) B A0(−3; −3; 3) C A0(−3; 3; 3) D A0(−3; 3; 1)

Câu 63. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2016

Câu 64. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 65. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 66. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Trang 6

Câu 67. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

2

2 D V = 2a3

Câu 68. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 69. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 70. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A 2a

√ 2

√ 2

4 .

Câu 71. Khối đa diện đều loại {3; 3} có số mặt

Câu 72. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 73. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 74. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 75. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 76. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

58

3a

a√38

3a√38

29 .

Câu 77. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 78. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 79. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 80. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 81. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 82. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Trang 7

Câu 83. Tính giới hạn lim

2x+ 1

x+ 1

Câu 84. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 1 .

Câu 85. [1] Tập xác định của hàm số y= log3(2x+ 1) là

2

!

2;+∞

!

2

!

2;+∞

!

Câu 86. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 87. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3

a3√3

a3√3

a3

√ 2

12 .

Câu 88. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

8.

Câu 89. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 90. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 91. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 92. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3

3

Câu 93. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

2 .

Câu 94. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 95. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 96. Khối đa diện đều loại {4; 3} có số cạnh

Câu 97. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = −ey

− 1

Trang 8

Câu 98. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 99. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 4

3, 38 D 2, 4, 8.

Câu 100. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

2√e.

Câu 101. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 102. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 103. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 104. [2] Tổng các nghiệm của phương trình 3x−1.2x 2

= 8.4x−2là

Câu 105. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016 B T = 2017 C T = 1008 D T = 2016

2017.

Câu 106. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 107 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

C Cả ba đáp án trên.

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 108. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

1

3

2.

Câu 109. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 110. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3

a3√ 2

a3√ 3

2

Câu 111. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Trang 9

Câu 112. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 113. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 114. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 115. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi

M, N và P lần lượt là tâm của các mặt bên ABB0

A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

3

√ 3

√ 3

Câu 116. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 117. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 118. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 119. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

3

!n

3

!n

e

!n

Câu 120. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 121. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 122. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng 2n.

B Số mặt của khối chóp bằng số cạnh của khối chóp.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số mặt của khối chóp bằng 2n+1.

Câu 123. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 124. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 125. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn

bằng

Câu 126. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

3

8a3√3

8a3√3

a3√3

9 .

Trang 10

Câu 127. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

2.

Câu 128. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 129. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

3

1

Câu 130. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h.

HẾT

Ngày đăng: 09/04/2023, 16:38

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN