Free LATEX (Đề thi có 11 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) c[.]
Trang 1Free LATEX
(Đề thi có 11 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
2a3√ 3
4a3√ 3
a3√ 3
2 .
Câu 2. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
18.
Câu 3. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3√ 3
a3
a3
√ 3
2 .
Câu 4. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
Câu 5. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
6
a3√ 2
a3√ 3
a3√ 3
24 .
Câu 6. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 7. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln x B y0 = 1
0 = 2x ln 2 D y0 = 1
2x ln x.
Câu 8. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a√3
a
Câu 9. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C = a√3 Thể tích khối chóp S ABCD là
A. a
3
a3√ 3
3√ 3
3 .
Câu 10. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Một hình chóp tứ giác và một hình chóp ngũ giác.
Trang 2C Hai hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 11. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 12. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 13. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 14. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 15. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 6
a3√ 2
6 .
Câu 16. Khối đa diện loại {4; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối lập phương C Khối bát diện đều D Khối tứ diện đều.
Câu 17. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 18. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Năm hình chóp tam giác đều, không có tứ diện đều.
C Bốn tứ diện đều và một hình chóp tam giác đều.
D Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 19. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 20 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Trang 3Câu 21. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√ 5
a3√ 3
a3√ 5
4 .
Câu 22. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
2S h. D V = 1
3S h.
Câu 23 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C B. Z k f(x)dx= kZ f(x)dx, k là hằng số
C.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
Câu 24 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
C.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
Câu 25. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1+ 2e
4 − 2e. B m= 1 − 2e
4 − 2e. C m= 1+ 2e
4e+ 2. D m=
1 − 2e 4e+ 2.
Câu 26. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 27. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 28. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 29. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 30. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 31. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 32 Phát biểu nào sau đây là sai?
A lim 1
C lim1
Câu 33. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
6 . B V = πa3
√ 3
3 . C V = πa3
√ 3
2 . D V = πa3
√ 6
6 .
Câu 34. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A − 1
1
1
Trang 4Câu 35. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
1
Câu 36. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 37. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Trục thực.
C Hai đường phân giác y= x và y = −x của các góc tọa độ
D Trục ảo.
Câu 38. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 < m ≤ 3
3
9
4.
Câu 39. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 40. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối lập phương B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.
Câu 41. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 42 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 43. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
2 .
Câu 44. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2;+∞
!
2;+∞
!
2
!
Câu 45. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 46. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 47. Biểu thức nào sau đây không có nghĩa
Trang 5Câu 48. [2-c] Cho hàm số f (x) = 9
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 49. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 50. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 51. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 52. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 3 đỉnh, 3 cạnh, 3 mặt D 4 đỉnh, 6 cạnh, 4 mặt.
Câu 53. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 68
Câu 54. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 55. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số mặt của khối chóp bằng 2n+1.
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số cạnh của khối chóp bằng 2n.
Câu 56. Tính lim
x→3
x2− 9
x −3
Câu 57. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 58. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 59. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 60. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 61. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là
Câu 62. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Trang 6Câu 63. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A 2a
√
√
√
√ 6
2 .
Câu 64. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 65. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 66. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3
abằng
1
3.
Câu 67. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 68. Thể tích của khối lập phương có cạnh bằng a√2
A 2a3
√
3√ 2
2
Câu 69. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
6 .
Câu 70. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 71 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C Cả ba đáp án trên.
D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
Câu 72. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 73. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1 B M= e, m = 1
e. C M = 1
e, m = 0 D M = e, m = 0
Câu 74. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
a2√7
11a2
a2√5
16 .
Trang 7Câu 75. Khối đa diện đều loại {3; 3} có số mặt
Câu 76. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 77. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 70, 128 triệu đồng C 20, 128 triệu đồng D 3, 5 triệu đồng.
Câu 78. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 79. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 80. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
Câu 81. Khối lập phương thuộc loại
Câu 82. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A a
√
√ 3
a√3
a√3
2 .
Câu 83. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 84. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√ 13
√ 13
Câu 85. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
a√57
a√57
17 .
Câu 86. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A a
√
√ 2
√
√ 2
2 .
Câu 87. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 C m ≤ 0 D m > −5
4.
Câu 88. Khối đa diện đều loại {4; 3} có số đỉnh
Trang 8Câu 89. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 90. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 91. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A −2 < m < −1 B (−∞; −2) ∪ (−1; +∞) C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1;+∞)
Câu 92. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A a3
√
3√ 6
2a3√6
a3√6
3 .
Câu 93. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 94. Tính limcos n+ sin n
n2+ 1
Câu 95. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 6
a
√ 3
a
√ 6
3 .
Câu 96. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 97. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 98. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 99. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3
− z
A P= −1+ i
√ 3
√ 3
2 . D P= 2
Câu 100. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.
Câu 101. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 102. Hàm số f có nguyên hàm trên K nếu
A f (x) có giá trị nhỏ nhất trên K B f (x) liên tục trên K.
C f (x) có giá trị lớn nhất trên K D f (x) xác định trên K.
Câu 103. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 104. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 105. Khối đa diện đều loại {3; 4} có số cạnh
Trang 9Câu 106. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
√
Câu 107. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 108. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±1 B m= ±√2 C m= ±√3 D m= ±3
Câu 109. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 + ln x B y0 = ln x − 1 C y0 = 1 − ln x D y0 = x + ln x
Câu 110. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun
vn bằng
Câu 111. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 112. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 6
a3
√ 6
a3
√ 6
24 .
Câu 113. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 114. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
3.
Câu 115. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
A −1
1
2.
Câu 116 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
C.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
D.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 117. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Câu 118. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 119. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Trang 10Câu 120. Mặt phẳng (ABC ) chia khối lăng trụ ABC.A BC thành các khối đa diện nào?
A Hai khối chóp tứ giác.
B Hai khối chóp tam giác.
C Một khối chóp tam giác, một khối chóp ngữ giác.
D Một khối chóp tam giác, một khối chóp tứ giác.
Câu 121. Tính lim n −1
n2+ 2
Câu 122. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng
Câu 123. [1] Giá trị của biểu thức 9log3 12bằng
Câu 124. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = (1, 01)3
(1, 01)3− 1 triệu. B m = 100.1, 03
3 triệu.
C m = 100.(1, 01)3
(1, 12)3− 1 triệu.
Câu 125. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 126. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Câu 127. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 128. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 129. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 130. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
HẾT