Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt? A 12 đỉnh, 30 cạnh, 20 mặt B 20 đỉnh, 30 cạnh[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 2. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 3. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 3ac
3b+ 2ac
3b+ 2ac
c+ 3 .
Câu 4. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
Câu 5. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 6. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 20 mặt đều.
Câu 7. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞;1
2
!
2;+∞
!
2;+∞
!
2
!
Câu 8. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2 bằng
Câu 9. Khối đa diện đều loại {3; 4} có số mặt
Câu 10. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 + ln x B y0 = x + ln x C y0 = 1 − ln x D y0 = ln x − 1
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3
√ 6
a3
√ 6
a3
√ 6
6 .
A. −3
√
√
Câu 13. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
3S h. D V = 3S h
Câu 14. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 16. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
Trang 2Câu 17. Khối đa diện đều loại {3; 5} có số cạnh
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 19. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2, phần ảo là 1 −
√
√
2 − 1, phần ảo là
√ 3
C Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là −
√ 3
Câu 20 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D Cả ba đáp án trên.
Câu 22. Dãy số nào có giới hạn bằng 0?
A un= n2− 4n B un = 6
5
!n C un = n3− 3n
n+ 1 . D un = −2
3
!n
Câu 23. Dãy số nào sau đây có giới hạn là 0?
A. 5
3
!n
e
!n
3
!n
3
!n
Câu 24. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (II) đúng B Cả hai đều sai C Cả hai đều đúng D Chỉ có (I) đúng.
Câu 25. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 26. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 27. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 28. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
0 = 1
xln 10. D.
1
10 ln x.
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Trang 3
Câu 30. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 31. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 32. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
thẳng S B bằng
A. a
a
a√3
2 .
Câu 34. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 4 ln 2x
2x3ln 10 . C y
0 = 1 2x3ln 10. D y
0 = 1 − 2 ln 2x
x3ln 10 .
biến d thành d0?
Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
a3√3
8a3√3
4a3√3
9 .
Câu 38. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 39. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 4a
3√
3
2a3√ 3
5a3√ 3
a3√ 3
2 .
Câu 40. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
3√ 3
a3√3
2 .
Trang 4Câu 41. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→a + f(x)= lim
x→a − f(x)= +∞
C lim
x→af(x)= f (a) D f (x) có giới hạn hữu hạn khi x → a.
Câu 42. Xác định phần ảo của số phức z= (√2+ 3i)2
A −6
√
√ 2
Câu 43. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
Câu 45. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 46. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 47. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 48. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số nghịch biến trên khoảng (−2; 1).
Câu 49. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 50. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 51. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
đến (S AB) bằng
A a
√
√
√ 6
√ 6
− 3mx2+ 3m2
có 2 điểm cực trị
x có giá trị cực đại là
Câu 55. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Trang 5Câu 56. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 57. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 58. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ (a; b), ta có f0(x)= F(x)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
Câu 59. Khối đa diện đều loại {3; 3} có số cạnh
Câu 60. [1] Giá trị của biểu thức 9log3 12bằng
Câu 61. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Câu 62. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 63. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
Câu 64. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 65. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 66. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 67. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 68. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 9 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 3 lần.
2+ 22+ · · · + n2
n3
1
Câu 70. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
3√ 2
3√
2 D V = 2a3
Trang 6Câu 71 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α B. a
α
aβ = aα C aαβ = (aα)β D aα+β = aα.aβ
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 2
2 e
π
√ 3
2 e
π
Câu 73. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {0} B. D = R C. D = (0; +∞) D. D = R \ {1}
Câu 74. Tứ diện đều thuộc loại
Câu 75. Khối đa diện đều loại {5; 3} có số mặt
Câu 76. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 77. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
Câu 78. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 8 cạnh, 4 mặt.
Câu 79. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
D Câu (II) sai.
của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3√
3
4a3√3
2a3
4a3
3 .
Câu 81. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số đồng biến trên khoảng (1; 2) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (1;+∞)
Câu 82. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A.
√
√
√
√ 17
17 .
Câu 83. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 84. Giá trị cực đại của hàm số y = x3
− 3x2− 3x+ 2
Trang 7Câu 85. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là 3, phần ảo là 4.
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.
Câu 86. Tính limcos n+ sin n
n2+ 1
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 88. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 89. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
5
2− 1 3n6+ n4
3.
Câu 91. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 92 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
C.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx D.
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
Câu 93. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 95. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 96. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 97. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√ 6
cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√5
a3√5
a3√5
6 .
Trang 8Câu 100. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
3√
6
a3√ 3
a3√ 6
a3√ 3
2 .
Câu 101. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
sin n
1
n.
Câu 102. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 103 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
dx = x + C, C là hằng số B.
Z 0dx = C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 104. Thập nhị diện đều (12 mặt đều) thuộc loại
Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 106. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 107. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
cách giữa hai đường thẳng BD và S C bằng
√ 6
a
√ 6
a
√ 6
3 .
x→2
x+ 2
x bằng?
Câu 110. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e2
− 2; m = e−2+ 2 B M = e−2
− 2; m= 1
C M = e−2+ 1; m = 1 D M = e−2+ 2; m = 1
Câu 111. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 112. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
Trang 9Câu 113. [2-c] Cho hàm số f (x) = 9
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
A. 1
Câu 114. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
B Nếu
Z
f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R
C Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
D Nếu
Z
f(x)dx=
Z g(x)dx thì f (x)= g(x), ∀x ∈ R
Câu 115. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
C lim un= 1
Câu 116. Tìm giá trị nhỏ nhất của hàm số y= (x2
− 2x+ 3)2
− 7
cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a
√ 2
√
√ 3
bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
a√38
3a√58
3a√38
29 .
Câu 119. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 120. Tìm giới hạn lim2n+ 1
n+ 1
chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 122 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 2, 20 triệu đồng C 3, 03 triệu đồng D 2, 22 triệu đồng.
2
2n2+ 1 bằng?
A. 1
1
1
Trang 10Câu 124. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 125. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 126. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A a3
√
3√ 2
a3√ 3
a3√ 3
4 .
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (II) đúng B Cả hai câu trên sai C Chỉ có (I) đúng D Cả hai câu trên đúng.
Câu 129. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 130. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
2e.
HẾT