1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 7 (196)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 7 (196)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,29 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là A 64cm3 B 91c[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

là:

Câu 2. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√3

a√6

a√6

2 .

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

2.

Câu 4. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

√ 3

1

3

2.

x→−∞

4x+ 1

x+ 1 bằng?

x→1

x3− 1

x −1

thành

A Một hình chóp tam giác và một hình chóp tứ giác.

B Hai hình chóp tam giác.

C Hai hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Z 1

0

xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

4.

Câu 9. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. B V = 1

2S h. C V = S h D V = 3S h

của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3

2a3√ 3

4a3

3 .

Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

8a3√3

a3√3

4a3√3

9 .

Trang 2

Câu 13. [1] Tập xác định của hàm số y= 4x +x−2là

A. D = [2; 1] B. D = R \ {1; 2} C. D = R D. D = (−2; 1)

Câu 14. [1] Giá trị của biểu thức log √31

10 bằng

1

Câu 15. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

1

2e.

xy+ x + 2y + 17

Câu 17. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 19. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

4a3√ 6

2a3√ 6

3 .

người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

thẳng BB0và AC0bằng

2

a2+ b2 B. √ ab

a2+ b2 C. ab

a2+ b2 D. √ 1

a2+ b2

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 8

√ 3

20√3

√ 3

Câu 23. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

Câu 24. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3√

3 B V = 6a3 C V = 3a3

√ 3

2 . D V = a3

√ 3

2 .

Trang 3

Câu 26. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 27. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.

Câu 28. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

2017

4035

2018.

A. 1

1

n+ 1

sin n

n .

Câu 30. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√3

a3√3

a3

4 .

d0?

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

A.

3

√ 3

√ 3

3

4.

Câu 38. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

√ 2

Câu 39. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

e.

Trang 4

Câu 41. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 5

9

23

13

100.

3|x−2| = m − 2 có nghiệm

Câu 45. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 3

2 e

π

√ 2

2 e

π

2e

π

3

(ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 15

3√

3√ 6

3 .

khối chóp A.GBC

2n2+ 3n + 1 bằng

A.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

C.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

D.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 50. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= 1

e, m = 0 C M = e, m = 0 D M = e, m = 1

e.

A un= −2

3

!n B un = n3− 3n

n+ 1 . C un = n2− 4n D un = 6

5

!n

cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√3

a3√5

a3√5

4 .

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Trang 5

Câu 54. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 5a

8a

2a

a

9.

lên?

giữa hai đường thẳng S B và AD bằng

√ 2

√ 2

3 .

Câu 59. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 < m ≤ 3

3

9

4.

Câu 61. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

x→3

x2− 9

x −3

− 5x = 20 là

Câu 64. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C.

Z

f(x)dx

!0

= f (x)

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 66. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng

Câu 67. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

3√

3√ 2

a3√3

6 .

Trang 6

Câu 69. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 70. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

A y = x +1

x. B y= x4

− 2x+ 1 C y= x3

− 3x D y= x −2

2x+ 1.

A. a

3√

2

a3√2

a3√2

a3√2

4 .

Câu 74. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

A.

√ 2

A aαbα= (ab)α B. a

α

aβ = aα C aα+β = aα.aβ D aαβ = (aα)β

Câu 76. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối lập phương D Khối 12 mặt đều.

log715 − log71530 bằng

C lim 1

n = 0

Câu 80. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

A y0 = ln 10

0 = 1

xln 10. C y

0 = 1

1

10 ln x.

Trang 7

Câu 83. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = (1, 01)3

(1, 01)3− 1 triệu. B m = 100.1, 03

3 triệu.

C m = 120.(1, 12)3

(1, 12)3− 1 triệu. D m = 100.(1, 01)3

3 triệu.

Câu 85. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 86. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và √3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

Câu 87. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A Số mặt của khối chóp bằng 2n+1.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số cạnh của khối chóp bằng 2n.

Câu 89. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

2√

3√ 2

24 .

Câu 90. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2] ∪ [−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2) ∪ (−1; +∞) D −2 < m < −1.

Câu 93. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

17 .

Trang 8

Câu 94. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

A un= n2− 3n

n2 B un = 1 − 2n

5n+ n2 C un = n2− 2

5n − 3n2 D un = n2+ n + 1

(n+ 1)2

Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3√ 15

a3

a3√ 15

25 .

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

a2√2

a2√7

11a2

32 .

Câu 99. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1

0

f(x)dx

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 3, 5 triệu đồng C 20, 128 triệu đồng D 50, 7 triệu đồng.

Câu 101. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2

!

2;+∞

!

2;+∞

!

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

2.

Câu 103. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

là:

A. 1

3

!n

3

!n

3

!n

e

!n

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

ABC.A0

B0C0 là

3√ 3

a3√3

a3

3 .

Trang 9

Câu 108. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 6

a3√ 3

a3√ 6

8 .

Câu 110. [1-c] Giá trị biểu thức log236 − log2144 bằng

A. D = (1; +∞) B. D = R \ {1} C. D = (−∞; 1) D. D = R

5

!2x−1

≤ 3 5

!2−x là

A m ≤ 1

1

1

1

4.

n2+ 1

A Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

B Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=

Z g(x)dx thì f (x) , g(x), ∀x ∈ R

vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

x có giá trị cực đại là

n+ 1

Câu 121. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A −1

1

Trang 10

Câu 122. Cho hàm số y= x3

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

!

3; 1

!

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số nghịch biến trên khoảng (1;+∞)

x→−∞

x2+ 3x + 5 4x − 1

A −1

1

Câu 125. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±√3 C m= ±1 D m= ±3

log4(x2+ y2)?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0

C.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

Câu 129. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 2

a3√ 6

a3√ 6

18 .

HẾT

Trang 11

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Trang 12

70 D 71 D

Ngày đăng: 07/04/2023, 23:25

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN