1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 7 (214)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 7 (214)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 150,99 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Gọi F(x) là một nguyên hàm của hàm y = ln x x √ ln2 x + 1 mà F(1) = 1 3 Giá trị của F2(e) là A 1 3 B 8 3 C[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

8

8

1

9.

Câu 2 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx B.

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

C.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0 D.

Z

f(x)g(x)dx=

Z

f(x)dx

Z g(x)dx

Câu 3. Xác định phần ảo của số phức z= (√2+ 3i)2

A 6

Câu 4. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 C. ab

a2+ b2 D. √ 1

a2+ b2

Câu 5. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

A. 2

Câu 6. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 2a

8a

a

5a

9 .

Câu 7. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A −1

1

1

e2

Câu 8. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 9. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 10. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 11. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11+ 19

9 . B Pmin = 9

11 − 19

9 . C Pmin = 2

11 − 3

3 . D Pmin= 18

11 − 29

21 .

Câu 12. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Trang 2

Câu 13. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 14. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 15. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 ln 2x

x3ln 10 . C y

0 = 1 − 2 log 2x

x3 D y0 = 1

2x3ln 10.

Câu 16. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 17. Bát diện đều thuộc loại

Câu 18. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

3a√58

a

√ 38

3a√38

29 .

Câu 19. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

1

3.

Câu 20. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 21. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 22. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. 1

2;+∞

!

2;+∞

!

2

!

2

!

Câu 23. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 2

1

Câu 24. Khối đa diện đều loại {3; 5} có số mặt

Câu 25. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A −3 − 4

√ 2

Câu 26. Cho I =

Z 3 0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Trang 3

Câu 27. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 28. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

a3

a3

3

Câu 29 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαβ = (aα

B aαbα = (ab)α

α

aβ = aα D aα+β = aα.aβ

Câu 30. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 31. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 32. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

3√

3√ 2

2 .

Câu 34. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 35. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối 20 mặt đều.

Câu 36. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {1} B. D = R \ {0} C. D = R D. D = (0; +∞)

Câu 37. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 38. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 3

5

Câu 39. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = 4 +2

e. B T = e + 3 C T = e + 2

e. D T = e + 1

Câu 40. Tính lim

x→2

x+ 2

x bằng?

Câu 41. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A −1

1

Trang 4

Câu 42. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 43. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

ln 10. C f

0 (0)= ln 10 D f0(0)= 10

Câu 44. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 45. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 46. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 47. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

Câu 48. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 2a

3√

3

4a3√3

2a3

4a3

3 .

Câu 49. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A 2 và 2

2 và 3 D 2 và 3.

Câu 50. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

A 2

Câu 51. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 52. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 2

Câu 53. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. ab

2

a2+ b2 D. √ ab

a2+ b2

Câu 54. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 55. Tính limcos n+ sin n

n2+ 1

Trang 5

Câu 56. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

√ 57

2a√57

19 .

Câu 57. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 58. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A a3

3√ 6

4a3√6

2a3√6

3 .

Câu 59. Tìm giá trị nhỏ nhất của hàm số y= (x2

− 2x+ 3)2

− 7

Câu 60. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

√ 13

Câu 61. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 3

6 . C V = πa3

√ 6

6 . D V = πa3

√ 3

2 .

Câu 62. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 63. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 64. Tính lim

x→ +∞

x −2

x+ 3

Câu 65. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B f (x) có giới hạn hữu hạn khi x → a.

C lim

x→a + f(x)= lim

x→af(x)= f (a)

Câu 66. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 67. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A 2a2

3√ 3

a3√2

a3√3

24 .

Câu 68 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Trang 6

Câu 69. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 70. Khối đa diện đều loại {4; 3} có số mặt

Câu 71 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

Câu 72. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

3√

3√ 3

3 .

Câu 73. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối lập phương D Khối tứ diện đều.

Câu 74. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

2a3

√ 3

4a3

√ 3

5a3

√ 3

3 .

Câu 75. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 76. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 77. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−1; 0) B (−∞; −1) và (0; +∞) C (−∞; 0) và (1; +∞) D (0; 1).

Câu 78. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 79. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A −5

4 < m < 0 B m ≥ 0 C m > −5

Câu 80. Khối đa diện đều loại {3; 3} có số cạnh

Câu 81. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 3

9

3

4.

Trang 7

Câu 82. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 83. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

3

a

a

Câu 84. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 85. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 86. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

Câu 87. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Hai hình chóp tứ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 88. [1] Biết log6 √a= 2 thì log6abằng

Câu 89. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 D xy0 = −ey+ 1

Câu 90. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 91. [1] Giá trị của biểu thức 9log3 12bằng

Câu 92. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 93. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

√ 2

a

√ 2

3 .

Câu 94. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 95. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 2

a3

√ 6

36 .

Câu 96. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Trang 8

Câu 97. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 98 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

D.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

Câu 99. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = (−2; 1) B. D = [2; 1] C. D = R D. D = R \ {1; 2}

Câu 100. Khối đa diện đều loại {5; 3} có số mặt

Câu 101. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 102. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 103. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 104. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 2x ln x C y0 = 1

2x ln x. D y

0 = 1

ln 2.

Câu 105. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 106. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3√

3

a3

3√ 3

2 .

Câu 107. Hàm số y= x +1

x có giá trị cực đại là

Câu 108. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. 1

ln 2

Câu 109. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Một khối chóp tam giác, một khối chóp tứ giác.

C Hai khối chóp tứ giác.

D Hai khối chóp tam giác.

Câu 110. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 68

Trang 9

Câu 111. Hàm số f có nguyên hàm trên K nếu

Câu 112. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

2 .

Câu 113. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) trên khoảng (a; b)

B F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D Cả ba câu trên đều sai.

Câu 114. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 9 lần.

Câu 115 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D.

Z

f(x)dx

!0

= f (x)

Câu 116. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = 1

e, m = 0 B M= e, m = 1 C M = e, m = 1

e. D M = e, m = 0

Câu 117. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 118. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 119. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 1

2

2

3.

Câu 120. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

a3√3

3√

3

4 .

Câu 121. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

Trang 10

Câu 122. Khối đa diện đều loại {4; 3} có số cạnh

Câu 123. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x4− 2x+ 1 C y= x −2

2x+ 1. D y= x3− 3x.

Câu 124. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. " 2

5;+∞

!

3

#

"

−2

3;+∞

!

5

#

Câu 125. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 126. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a√6

√ 6

3 .

Câu 127. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối lập phương C Khối tứ diện đều D Khối bát diện đều.

Câu 128. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Câu 129. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3√ 6

a3√ 3

a3√ 3

48 .

Câu 130. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

HẾT

Ngày đăng: 07/04/2023, 23:19