Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [3 1133d] Tính lim 12 + 22 + + n2 n3 A 2 3 B +∞ C 1 3 D 0 Câu 2 [4 1243d] Trong tất cả các số phức z thỏa[.]
Trang 1Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 2
Câu 2. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|
A. 12
√
17
√
√
√ 68
Câu 3 Mệnh đề nào sau đây sai?
A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D.
Z
f(x)dx
!0
= f (x)
Câu 4. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 5. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 6. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 7. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
√ 13
13 .
Câu 8. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
1
1
2.
Câu 9. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A. 2
2
Câu 10. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
A Dãy số unkhông có giới hạn khi n →+∞ B lim un= 1
2.
Câu 11. Khối đa diện đều loại {3; 4} có số đỉnh
Trang 2Câu 12. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C −2 < m < −1 D (−∞; −2] ∪ [−1;+∞)
Câu 13. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 14. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 15. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. c
√
a2+ b2
√
a2+ b2+ c2 D. abc
√
b2+ c2
√
a2+ b2+ c2
Câu 16. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 17. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 18. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
a3
3
12.
Câu 19. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 20. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.
Câu 21. Khối đa diện đều loại {5; 3} có số mặt
Câu 22. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 23. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 24. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
Câu 25. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016
Trang 3Câu 26. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 27. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
a
8a
5a
9 .
Câu 28. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
4035
2016
Câu 29. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Chỉ có (II) đúng C Cả hai câu trên đúng D Chỉ có (I) đúng.
Câu 30. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 31. Cho hàm số y= 3 sin x − 4 sin3
x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 32. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 33. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
3
a
√ 6
a
√ 6
a
√ 6
7 .
Câu 34. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
36 .
Câu 35. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3
a3√3
2 .
Trang 4Câu 36. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1.
A. 1
3
√ 3
2 .
Câu 37. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.
Câu 38. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 39. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 40. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
2a3√3
3 .
Câu 41. [1] Tập xác định của hàm số y= 4x2+x−2là
A. D = R B. D = (−2; 1) C. D = [2; 1] D. D = R \ {1; 2}
Câu 42. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 43. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 44. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 45. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm tứ diện đều.
B Năm hình chóp tam giác đều, không có tứ diện đều.
C Bốn tứ diện đều và một hình chóp tam giác đều.
D Một tứ diện đều và bốn hình chóp tam giác đều.
Câu 46. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 47. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 48. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
2
a3
√ 3
a3
√ 3
a3
√ 3
12 .
Câu 49. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A. " 5
2; 3
!
"
2;5 2
!
Trang 5Câu 50. Khối đa diện đều loại {3; 4} có số cạnh
Câu 51. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4e+ 2. B m=
1 − 2e
4 − 2e. C m= 1+ 2e
4e+ 2. D m=
1+ 2e
4 − 2e.
Câu 52. Bát diện đều thuộc loại
Câu 53 Hình nào trong các hình sau đây không là khối đa diện?
Câu 54. Khối chóp ngũ giác có số cạnh là
Câu 55. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 56. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 57. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
A 2
√
3, 4
√
3, 38 B 8, 16, 32 C 2, 4, 8 D 6, 12, 24.
Câu 58. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
1
2
3.
Câu 59. Tính lim
x→2
x+ 2
x bằng?
Câu 60. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3
√ 3
a3
√ 3
8 .
Câu 61. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 62. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 63. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
√ 3
Câu 64. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
6 .
Câu 65. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 1
1
8
8
9.
Trang 6Câu 66. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng
1
Câu 67. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 68. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 69. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 70. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
a√57
2a√57
19 .
Câu 71. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 72. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 73. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. ab
a2+ b2 C. √ ab
2
√
a2+ b2
Câu 74. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 75. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey
− 1
Câu 76. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 77. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Trang 7Câu 78. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 79. Khối đa diện đều loại {5; 3} có số cạnh
Câu 80. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 3 B T = e + 2
e. C T = 4 + 2
e. D T = e + 1
Câu 81. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
5
Câu 82. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 83. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 2
Câu 84. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3
√ 3
a3
√ 3
2√ 2
Câu 85. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n2− 4n C un = n3− 3n
n+ 1 . D un = 6
5
!n
Câu 86. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
4a3√ 3
a3
3 .
Câu 87. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
7
Câu 88. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 89. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
e.
Câu 90. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?
Câu 91. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 7
5
Trang 8Câu 92. Tứ diện đều thuộc loại
Câu 93. [4-1213d] Cho hai hàm số y = x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y = |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 94. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 95 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
D Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
Câu 96. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A.
√
Câu 97. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 2
1
2
3.
Câu 98. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 99. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A.
"
−2
3;+∞
! B. " 2
5;+∞
!
5
#
3
#
Câu 100. Hàm số y= −x3+ 3x2
− 1 đồng biến trên khoảng nào dưới đây?
Câu 101. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 ln 2x
x3ln 10 . B y
0 = 1 − 2 log 2x
x3 C y0 = 1
2x3ln 10. D y
0 = 1 − 4 ln 2x 2x3ln 10 .
Câu 102. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
3 triệu.
C m = 120.(1, 12)3
(1, 12)3− 1 triệu. D m = (1, 01)3
(1, 01)3− 1 triệu.
Câu 103. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Trang 9Câu 104. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 105. Cho hàm số y= −x3+ 3x2
− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0; 2) B Hàm số nghịch biến trên khoảng (−∞; 2).
C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số nghịch biến trên khoảng (0; 2).
Câu 106. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 107. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A. 1
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Câu 108. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 109. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m
mtan x+ 1 nghịch biến trên khoảng
0;π
4
Câu 110. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng −∞;1
3
! D Hàm số nghịch biến trên khoảng 1
3; 1
!
Câu 111. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 112. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?
A log2a= − loga2 B log2a= loga2 C log2a= 1
loga2. D log2a= 1
log2a.
Câu 113. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 114. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 115. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị nhỏ nhất trên K D f (x) xác định trên K.
Câu 116. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
2
a2√7
a2√5
11a2
32 .
Câu 117. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
Trang 10Câu 118. Dãy số nào sau đây có giới hạn là 0?
A. 4
e
!n
3
!n
3
!n
3
!n
Câu 119. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 120. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 121 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
D.
Z
u0(x)
u(x)dx= log |u(x)| + C
Câu 122. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. a
√
38
3a√38
3a
3a√58
29 .
Câu 123. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 2
√
√
Câu 124. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R B. D = R \ {1} C. D = (−∞; 1) D. D = (1; +∞)
Câu 125. [1] Giá trị của biểu thức log √31
10 bằng
1
Câu 126. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 127. [1] Giá trị của biểu thức 9log3 12bằng
Câu 128. Cho
Z 2 1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 129 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
D Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Câu 130. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?