1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 2 (68)

12 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 2 (68)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 152,6 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ A[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 2. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 3 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

k f(x)dx= f Z f(x)dx, k ∈ R, k , 0 B.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

f(x)g(x)dx=Z f(x)dx

Z

Z ( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx

Câu 4. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1 − 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1 − 2e 4e+ 2.

Câu 5. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng −∞;1

3

!

C Hàm số đồng biến trên khoảng 1

3; 1

!

3; 1

!

Câu 6. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

Câu 7. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3

abằng

1

Câu 8. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Câu 9. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 10. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 11. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 12. Bát diện đều thuộc loại

Câu 13. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h. D V = S h

Trang 2

Câu 14. Cho hàm số y= x3

− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (−∞; 0).

C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng (1; 2).

Câu 15. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 − ln x B y0 = x + ln x C y0 = ln x − 1 D y0 = 1 + ln x

Câu 16. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

a

√ 57

√ 57

19 .

Câu 17. Tính lim

x→3

x2− 9

x −3

Câu 18. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 19. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 20. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 21. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 38 C 8, 16, 32 D 6, 12, 24.

Câu 22. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 23. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 24. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 25. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 26. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 27. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Trang 3

Câu 28. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

√ 5

Câu 29. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 30. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 3

a3

√ 6

a3

√ 3

24 .

Câu 31. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 32. Tính lim n −1

n2+ 2

Câu 33. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Không có câu nào

sai

Câu 34. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

a3

2a3

√ 3

4a3

√ 3

3 .

Câu 35. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

7

3.

Câu 36 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 22 triệu đồng.

Câu 37. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

A |z| = √4

Câu 38. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 39. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Trang 4

Câu 40. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

e

!n

3

!n

Câu 41. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

4a3√6

a3√6

3√ 6

Câu 42. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3√ 3

a3

4 .

Câu 43. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

2.

Câu 44. [1] Giá trị của biểu thức 9log3 12bằng

Câu 45. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 46. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

2a√3

√ 3

2 .

Câu 47. Biểu thức nào sau đây không có nghĩa

Câu 48. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A 2a

√ 6

√ 3

Câu 49. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 50. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

A. 3a

Câu 51. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 52. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 53. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Không thay đổi B Tăng lên (n − 1) lần C Giảm đi n lần D Tăng lên n lần.

Câu 54. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Trang 5

Câu 55 Phát biểu nào sau đây là sai?

A lim1

nk = 0

C lim un= c (un = c là hằng số) D lim qn= 0 (|q| > 1)

Câu 56. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

1

4.

Câu 57. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

2 .

Câu 58. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

4 .

Câu 59. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 60. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = (−∞; 1) C. D = (1; +∞) D. D = R

Câu 61. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 62. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên khoảng (−2; 1).

B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

Câu 63. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 64. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 65. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun

vn bằng

Câu 66. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ c2

a2+ b2+ c2 B. abc

b2+ c2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. c

a2+ b2

a2+ b2+ c2

Câu 67. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

2

3

2.

Trang 6

Câu 68. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 4a

3√

3

5a3

√ 3

a3

√ 3

2a3

√ 3

3 .

Câu 69. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 70. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 71. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√6

a√3

a√6

7 .

Câu 72. Tính limcos n+ sin n

n2+ 1

Câu 73. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln x B y0 = 1

0 = 2x ln 2 D y0 = 1

2x ln x.

Câu 74. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

Câu 75. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Một hình chóp tứ giác và một hình chóp ngũ giác.

C Hai hình chóp tam giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

Câu 76. Giá trị cực đại của hàm số y = x3

− 3x+ 4 là

Câu 77. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 78. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = n2− 3n

n2 C un = 1 − 2n

5n+ n2 D un = n2− 2

5n − 3n2

Câu 79. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1

Câu 80. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 81. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Trang 7

Câu 82. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 12 mặt đều B Khối 20 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 83. [1] Tập xác định của hàm số y= 2x−1là

A. D = (0; +∞) B. D = R C. D = R \ {0} D. D = R \ {1}

Câu 84. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 85. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 86. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 87. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

14√3

3 .

Câu 88. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 89. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

a3√ 3

3√ 3

6 .

Câu 90. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x3− 3x. C y= x +

1

x. D y= x4− 2x+ 1

Câu 91 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 92. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 93 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

Câu 94. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 1; m = 1 B M = e2− 2; m = e−2+ 2

− 2; m= 1

Trang 8

Câu 95. Cho hàm số y= −x3+ 3x2

− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số đồng biến trên khoảng (0;+∞) D Hàm số nghịch biến trên khoảng (−∞; 2).

Câu 96. Khối chóp ngũ giác có số cạnh là

Câu 97. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 98. Khối đa diện đều loại {3; 3} có số cạnh

Câu 99. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 100. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0 D m ≤ 0.

Câu 101. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 102. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

3√

3√ 3

a3√ 2

4 .

Câu 103. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 8a

3√

3

4a3√ 3

a3√ 3

8a3√ 3

3 .

Câu 104. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

3√ 2

√ 2

Câu 105. Hàm số y= x +1

x có giá trị cực đại là

Câu 106. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

13

23

5

16.

Câu 107. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 2a

a

8a

5a

9 .

Câu 108. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 109. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3√

3

2a3√3

2a3

4a3

3 .

Trang 9

Câu 110. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

4.

Câu 111. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 112. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

2

Câu 113. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 114. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1+ i

√ 3

√ 3

Câu 115. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 1008 B T = 2016 C T = 2017 D T = 2016

2017.

Câu 116. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 117. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 118 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Câu 119. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 120. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A= a√3 Thể tích của khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

4 .

Câu 121. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2016

2017.

Trang 10

Câu 122. Khối đa diện đều loại {3; 4} có số mặt

Câu 123. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 124. [2] Cho hàm số f (x)= x ln2

x Giá trị f0(e) bằng

Câu 125. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 126. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 127. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 128. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 129. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= 1 C f0(0)= 1

ln 10. D f

0 (0)= ln 10

Câu 130. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

3.

HẾT

Ngày đăng: 07/04/2023, 22:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN