1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 2 (685)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập toán thptqg 2 (685)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2019
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 151,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Khối lập phương thuộc loại A {3; 3} B {3; 4} C {5; 3} D {4; 3} Câu 2 [1] Tập xác định của hàm số y = 4x2+x[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Khối lập phương thuộc loại

Câu 2. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R B. D = (−2; 1) C. D = R \ {1; 2} D. D = [2; 1]

Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 4. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số cạnh của khối chóp.

B Số đỉnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số cạnh của khối chóp bằng số mặt của khối chóp.

Câu 5 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A. a

α

aβ = aα B aαbα = (ab)α C aαβ = (aα)β D aα+β = aα.aβ

Câu 6 Phát biểu nào sau đây là sai?

n = 0

C lim 1

Câu 7. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 8 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 25 triệu đồng B 2, 22 triệu đồng C 2, 20 triệu đồng D 3, 03 triệu đồng.

Câu 9. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.

Câu 10. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ (a; b), ta có f0(x)= F(x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 11. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 12. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối lập phương D Khối bát diện đều.

Trang 2

Câu 13. [4-1214h] Cho khối lăng trụ ABC.A BC , khoảng cách từ C đến đường thẳng BB bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

√ 3

Câu 14. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

D Câu (I) sai.

Câu 15. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2

!

2;+∞

!

2;+∞

!

Câu 16. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 17. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 3

a3

√ 6

a3

√ 6

48 .

Câu 18. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2 (e) là:

A. 1

8

8

1

9.

Câu 19. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

e

!n

3

!n

3

!n

Câu 20. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 21. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

a2√2

11a2

a2√7

8 .

Câu 22. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3

− 2x2+ 3x − 1

Câu 23. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 2

2√ 2

Câu 24. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Trang 3

Câu 25. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.

Câu 26. Hàm số nào sau đây không có cực trị

A y = x +1

x. B y= x3− 3x C y= x4− 2x+ 1 D y= x −2

2x+ 1.

Câu 27. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

2.

Câu 28. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 29. Dãy số nào sau đây có giới hạn khác 0?

A. 1

sin n

n+ 1

1

n.

Câu 30. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e2− 2; m = e−2+ 2 B M = e−2+ 2; m = 1

C M = e−2+ 1; m = 1 D M = e−2− 2; m= 1

Câu 31 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C B.

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

C.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số D.

Z

f(x)dx

!0

= f (x)

Câu 32. Khối đa diện đều loại {3; 3} có số cạnh

Câu 33. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 34. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 35. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 36. Bát diện đều thuộc loại

Câu 37. [1] Tính lim 1 − n

2 2n2+ 1 bằng?

A. 1

1

1

Câu 38. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 39 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

C Cả ba đáp án trên.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Trang 4

Câu 40. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 8 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.

Câu 41. Khối đa diện đều loại {3; 4} có số cạnh

Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 43. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 44. Khối đa diện đều loại {3; 4} có số mặt

Câu 45. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 3

Câu 46. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 47. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 48. Tính giới hạn lim2n+ 1

3n+ 2

3

2

3.

Câu 49. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

4 .

Câu 50. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 51. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

12.

Câu 52. Hàm số f có nguyên hàm trên K nếu

A f (x) có giá trị lớn nhất trên K B f (x) xác định trên K.

C f (x) có giá trị nhỏ nhất trên K D f (x) liên tục trên K.

Câu 53. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Trang 5

Câu 54. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 2

2 e

π

√ 3

2 e

π

6

Câu 55. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 56. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 57. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Đường phân giác góc phần tư thứ nhất.

C Trục ảo.

D Trục thực.

Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

2a3√3

4a3√3

a3

3 .

Câu 59. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 2

1

2

3.

Câu 60. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 D xy0 = ey+ 1

Câu 61. Tính lim

x→3

x2− 9

x −3

Câu 62. Khối đa diện đều loại {3; 5} có số cạnh

Câu 63. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3

a3√ 3

a3√ 3

3 .

Câu 64. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3)−√ 6

3x+ 1 Tính

Z 1 0

f(x)dx

Câu 65. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 66. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là −4 B Phần thực là 4, phần ảo là 1.

Câu 67. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số nghịch biến trên khoảng (0; 2).

Trang 6

Câu 68. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

2

3√

3√ 3

a3√ 3

4 .

Câu 69. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 70. Khối đa diện đều loại {5; 3} có số cạnh

Câu 71. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 72. Tính limcos n+ sin n

n2+ 1

Câu 73. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 74. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 75. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 76. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

Câu 77. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A.

3

1

3

Câu 78. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 79. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 80. Khối đa diện đều loại {4; 3} có số mặt

Câu 81 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 82. Khối đa diện đều loại {3; 5} có số mặt

Câu 83. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Trang 7

Câu 84. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Câu 85. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

ln 2

2 .

Câu 86. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3

√ 3

2 . B V = a3

√ 3

2 . C V = 6a3 D V = 3a3√

3

Câu 87 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 88. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

6 .

Câu 89. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = n2− 3n

n2 C un = n2− 2

5n − 3n2 D un = 1 − 2n

5n+ n2

Câu 90. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 91. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 26

Câu 92. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A −1

1

e.

Câu 93. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 94. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

√ 2

Câu 95. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1+ i

√ 3

2 . B P= −1 − i

√ 3

Trang 8

Câu 96. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 97. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 3

a3

√ 6

a3

√ 2

16 .

Câu 98. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng 2n+1.

B Số đỉnh của khối chóp bằng 2n+ 1

C Số mặt của khối chóp bằng số cạnh của khối chóp.

D Số cạnh của khối chóp bằng 2n.

Câu 99. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 100. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 101. Tính lim 5

n+ 3

Câu 102. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

3√ 2

Câu 103. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi

G la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 104. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

2.

Câu 105. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối 20 mặt đều.

Câu 106. Khối chóp ngũ giác có số cạnh là

Câu 107. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 108 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x) − g(x))dx=

Z

f(x)dx −

Z g(x)dx B.

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

C.

Z

f(x)g(x)dx=

Z

f(x)dx

Z

Z ( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx

Câu 109. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Trang 9

Câu 110. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 111. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 112. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2

− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Câu 113. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga√3abằng

1

3.

Câu 114. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 115. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. ab

2

a2+ b2 D. √ 1

a2+ b2

Câu 116. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 117. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 6

a3

√ 2

6 .

Câu 118. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 119. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2016

4035

2017

2018.

Câu 120. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 1

2

e3

Câu 121. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối 12 mặt đều C Khối tứ diện đều D Khối bát diện đều.

Câu 122. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2√a2+ b2 C. √ ab

a2+ b2 D. √ 1

a2+ b2

Trang 10

Câu 123 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

Câu 124. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là

2, phần ảo là 1 −

2 − 1, phần ảo là −

√ 3

C Phần thực là

2 − 1, phần ảo là

2, phần ảo là −

√ 3

Câu 125. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 126. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 127. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 128 Hình nào trong các hình sau đây không là khối đa diện?

Câu 129. [1] Đạo hàm của làm số y = log x là

A y0 = 1

1

0 = ln 10

0 = 1

xln 10.

Câu 130. [1] Giá trị của biểu thức log √31

10 bằng

A. 1

1

HẾT

Ngày đăng: 07/04/2023, 22:06