1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán thptqg 1 (565)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Ôn Tập Toán Thptqg 1 (565)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán Học
Thể loại Đề Thi
Định dạng
Số trang 12
Dung lượng 153,08 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 10 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Tập xác định của hàm số y = log3(2x + 1) là A ( − 1 2 ;+∞ ) B ( −∞;− 1 2 ) C ( −∞; 1 2 ) D ( 1 2 ;+∞ )[.]

Trang 1

Free LATEX

(Đề thi có 10 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −1

2;+∞

!

2

!

2

!

2;+∞

!

Câu 2. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB= a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

3a√38

a√38

3a

√ 58

29 .

Câu 3. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A −1

1

4.

Câu 4 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 5. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

3 . B V = πa3

√ 3

6 . C V = πa3

√ 3

2 . D V = πa3

√ 6

6 .

Câu 6. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 7 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

xαdx= α + 1xα+1 + C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z 0dx = C, C là hằng số

Câu 8. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.

Câu 9. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 10. Hàm số y= −x3+ 3x2

− 1 đồng biến trên khoảng nào dưới đây?

Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 4a

3√

3

8a3√ 3

a3√ 3

8a3√ 3

9 .

Câu 12. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.

Trang 2

Câu 13. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 6

a3√ 3

a3√ 6

24 .

Câu 14. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

√ 2

Câu 15. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

13

23

5

16.

Câu 16. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là −4 B Phần thực là 4, phần ảo là −1.

C Phần thực là −1, phần ảo là 4 D Phần thực là 4, phần ảo là 1.

Câu 17. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 18. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3

4a3√ 3

a3

2a3√ 3

3 .

Câu 19. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

1

e3

Câu 20. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

1

2.

Câu 21. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Một hình chóp tam giác và một hình chóp tứ giác.

C Hai hình chóp tứ giác.

D Hai hình chóp tam giác.

Câu 22. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

3

2 e

π

2e

π

√ 2

2 e

π

Câu 23. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 24. [1] Giá trị của biểu thức log √31

10 bằng

1

3.

Câu 25. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a√6

a√6

a√3

2 .

Trang 3

Câu 26. Tính lim 5

n+ 3

Câu 27. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Câu 28. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 29. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x) − g(x)]= a − b B lim

x→ +∞[ f (x)g(x)]= ab

C lim

x→ +∞

f(x)

g(x) = a

Câu 30. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 31. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

a

a√3

2 .

Câu 32. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 33. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 34. Cho

Z 1 0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

4.

Câu 35. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 36. Khối đa diện đều loại {3; 4} có số mặt

Câu 37. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A.

√ 17

√ 68

Câu 38. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1

2x3ln 10. C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 4 ln 2x 2x3ln 10 .

Câu 39. Tính lim n −1

n2+ 2

Câu 40. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 2

11 − 3

3 . C Pmin = 9

11+ 19

9 . D Pmin= 9

11 − 19

Trang 4

Câu 41 Mệnh đề nào sau đây sai?

A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

B.

Z

f(x)dx

!0

= f (x)

C F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 42. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Câu 43. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

a√57

2a√57

√ 57

Câu 44. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Câu 45. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

e

!n

3

!n

3

!n

Câu 46. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 47. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 48. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 49. [2] Đạo hàm của hàm số y = x ln x là

A y0 = 1 + ln x B y0 = x + ln x C y0 = 1 − ln x D y0 = ln x − 1

Câu 50. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 51. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 52. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 20 mặt đều B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 53. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√ 3

a3√ 3

a3√ 3

36 .

Câu 54. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Trang 5

Câu 55. Thể tích của khối lập phương có cạnh bằng a

√ 2

A V = a3√

3√ 2

√ 2

Câu 56 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 57. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 2

Câu 58. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

A. 1

1

Câu 59. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 60. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 120.(1, 12)3

(1, 12)3− 1 triệu. B m = (1, 01)3

(1, 01)3− 1 triệu.

C m = 100.1, 03

3 triệu.

Câu 61. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

2.

Câu 62. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

2.

Câu 63 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

D.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

Trang 6

Câu 64. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 65 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ

B aαβ = (aα

C. a

α

aβ = aα D aαbα = (ab)α

Câu 66. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 67. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 68. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

√ 3

2 . D P= −1 − i

√ 3

Câu 69. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 70. Khối đa diện đều loại {5; 3} có số cạnh

Câu 71. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. B V = 1

2S h. C V = S h D V = 3S h

Câu 72. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối 20 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối 12 mặt đều.

Câu 73. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 74. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 3

9

3

Câu 75. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh của khối chóp bằng số mặt của khối chóp.

C Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

D Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 76 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Thập nhị diện đều B Bát diện đều C Nhị thập diện đều D Tứ diện đều.

Câu 77. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 78 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2

x

C.

Z

u0(x)

u(x)dx= log |u(x)| + C

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Trang 7

Câu 79. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1

Câu 80. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng −∞;1

3

!

C Hàm số nghịch biến trên khoảng 1

3; 1

! D Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 81. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

3

Câu 82. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→af(x)= f (a)

C f (x) có giới hạn hữu hạn khi x → a D lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 83. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 84. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Cả hai đều sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai đều đúng.

Câu 85. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 86. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

16 .

Câu 87. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. 2a

a

a√2

a

4.

Câu 88. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 89. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 90. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A. 3

√ 3

√ 3

√ 3

12.

Trang 8

Câu 91. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=

Z

g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu f (x)= g(x) + 1, ∀x ∈ R thì

Z

f0(x)dx=

Z

g0(x)dx

D Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

Câu 92. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 93. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= loga2 C log2a= 1

log2a. D log2a= 1

loga2.

Câu 94. [1] Tính lim1 − 2n

3n+ 1 bằng?

A −2

2

1

Câu 95. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

√ 57

a

√ 57

19 .

Câu 96. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

3.

Câu 97. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 98. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

2

11a2

a2

√ 7

a2

√ 5

16 .

Câu 99. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 100. Cho

Z 2 1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 101. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 102. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Trang 9

Câu 103. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. √ ab

a2+ b2 C. ab

a2+ b2 D. √ 1

a2+ b2

Câu 104. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 105. Tứ diện đều thuộc loại

Câu 106. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

A 3

Câu 107. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 108. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016 B T = 2016

2017. C T = 2017 D T = 1008

Câu 109. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 110. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 111. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của

P= xy + x + 2y + 17

Câu 112. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 113. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 114. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 3ac

3b+ 2ac

c+ 3 .

Câu 115. Khối đa diện đều loại {4; 3} có số mặt

Câu 116. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 117. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1 − 2e

4e+ 2. C m=

1+ 2e

4 − 2e. D m= 1+ 2e

4e+ 2.

Trang 10

Câu 118. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 119. Tính limcos n+ sin n

n2+ 1

Câu 120. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 2x ln 2 C y0 = 1

0 = 2x ln x

Câu 121. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 122. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 123. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 5a

3√

3

4a3√ 3

a3√ 3

2a3√ 3

3 .

Câu 124. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3

√ 6

a3

√ 6

a3

√ 6

6 .

Câu 125. Cho I =Z 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 126. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3

√ 6

a3

√ 3

a3

√ 3

24 .

Câu 127. [4-1213d] Cho hai hàm số y= x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y= |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 128. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm

Ađến đường thẳng BD0bằng

a2+ b2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. abc

b2+ c2

a2+ b2+ c2

Câu 129. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 130. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

HẾT

Ngày đăng: 07/04/2023, 21:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN