1. Trang chủ
  2. » Giáo án - Bài giảng

controlled synthesis of 1d zno nanostructures via hydrothermal

7 410 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 2,11 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The influence of precursor concentration, reaction time, solvent, reaction temperature, annexingagentandalkalisourceonthemorphologyandstructurewaselucidatedsystematically.The preferential

Trang 1

Controlled synthesis of 1D ZnO nanostructures via hydrothermal

process

Department of Chemistry, Tsinghua University, Beijing 100084, PR China

A R T I C L E I N F O

Article history:

Received 13 December 2012

Received in revised form 19 August 2013

Accepted 29 September 2013

Available online 17 October 2013

Keywords:

A Nanostructures

A Semiconductors

B Chemical synthesis

B Crystal growth

A B S T R A C T

ZnOnanostructureswithvariousmorphologiesandsizesweresuccessfullypreparedviaahydrothermal method The influence of precursor concentration, reaction time, solvent, reaction temperature, annexingagentandalkalisourceonthemorphologyandstructurewaselucidatedsystematically.The preferentialgrowthofZnOcrystalalongC-axisdirectionwasobviouswhentheprecursorconcentration waslow.AbalancebetweengrowthanddissolveexistedduringtheprocessofformingZnO.Thesolvent

ofwater-methanolwouldmakeforthegenerationofproductswithabigsizeandregularmorphology TheadsorptionofCTA+fromtheadditiveofcetyltrimethylammoniumbromide(CTAB)andhydroxyl groupsfrompolyethyleneglycol(PEG400)onZnOwouldslowdownthepreferentialgrowthratealong C-axisdirection,leadingtorod-likeproductswithsmalleraspectratios.Whentheconcentrationof NaOHwasincreasedtoacertaindegree,thegrowthrateofZnOwasslowerthanthedecompositionrate, leadingtoappearanceofirregulargrain-likeproducts

ß2013ElsevierLtd.Allrightsreserved

* Corresponding author Tel.: +86 10 62787601; fax: +86 10 62787601.

E-mail address: zhuyf@mail.tsinghua.edu.cn (Y Zhu).

0025-5408/$ – see front matter ß 2013 Elsevier Ltd All rights reserved.

Trang 2

wereobtainedafterdriedat808Cfor8h.

Trang 3

Fig 1 TEM images of ZnO with different precursor concentrations: (a) 0.067 M; (b) 0.0167 M; (c) 0.0067 M and (d) 0.001 M.

Trang 4

propertiesof eachsolventsuchaspolarityofsolvent,saturated

weaken

Scheme 1 is a schematic procedure to prepare ZnO

Figs.5and6showsTEMmicrographsoftheZnOcrystalsgrown

Fig 3 TEM images of ZnO prepared in different solvent: (a) water-methanol; (b) water-alcohol; (c) water-n-butyl alcohol.

Trang 5

Scheme 1 Schematic illustration of the proposed formation mechanisms of ZnO.

Trang 6

canbeseeninScheme1(b).ItcanbeseeningeneralthatPEG400

Fig 6 TEM images of ZnO with different adding volume of PEG400: (a) 0; (b) 0.2 ml; (c) 1 ml; (d) 2 ml and (e) 5 ml.

Trang 7

increased from 1:5 to 1:12, the morphology of product turns

detail

Acknowledgments

References

[1] B Dindar, S Icli, J Photochem Photobiol A: Chem 140 (2001) 263–268.

[2] C.M Lieber, Solid State Commun 107 (1998) 607–616.

[3] G.R Li, T Hu, G.L Pan, T.Y Yan, X.P Gao, H.Y Zhu, J Phys Chem C 112 (2008) 11859–11864.

[4] M.S Arnold, P Avouris, Z.W Pan, Z.L Wang, J Phys Chem B 107 (2003) 659–663.

[5] L Vayssieres, K Keis, J Phys Chem B 105 (2001) 3350–3352.

[6] W.I Park, D.H Kim, S.W Jung, G.C Yi, Appl Phys Lett 80 (2002) 4232–4234.

[7] L Vayssieres, Adv Mater 15 (2003) 464–466.

[8] J.H Choy, E.S Jang, J.H Won, Appl Phys Lett 84 (2004) 287–289.

[9] Z.Q Li, Y.J Xiong, Y Xie, Inorg Chem 42 (2003) 8105–8109.

[10] J.M Wang, L Gao, J Mater Chem 13 (2003) 2551–2554.

[11] B Liu, H.C Zeng, J Am Chem Soc 125 (2003) 4430–4431.

[12] Z.Q Li, Y Xie, Y.J Xiong, R Zhang, W He, Chem Lett 32 (2003) 760–761.

[13] Z.R Tian, J.A Voigt, J Am Chem Soc 124 (2002) 2954–12955.

[14] L Biao, S.H Yu, F Zhang, L.J Li, Q Zhang, L Ren, K Jiang, J Phys Chem B 108 (2004) 4338–4341.

[15] C.G Tian, Q Zhang, A.P Wu, M.J Jiang, Z.L Liang, B.J Jiang, H.G Fu, Chem Commun 48 (2012) 2858–2860.

[16] X Wang, Y.D Li, Inorg Chem 45 (2006) 7522–7534.

[17] B.M Wen, Y.Z Huang, J.J Boland, J Phys Chem C 112 (2008) 106–111.

[18] J Zhang, L.D Sun, Chem Mater 14 (2002) 4172–4177.

[19] Z Wang, X.F Qian, J Yin, Z.K Zhu, Langmuir 20 (2004) 3441–3448.

[20] W.J Li, E.W Shi, W.Z Zhong, Z.W Yin, J Cryst Growth 203 (1999) 186–196.

[21] L Vayssieres, N Beermann, S.E Lindquist, A Hagfeldt, Chem Mater 13 (2001) 233–235.

[22] L.L Wu, Y.S Wu, W Lu, H.Y Wei, Y.C Shi, Appl Surf Sci 252 (2005) 1436–1441.

[23] B Liu, H.C Zeng, Langmuir 20 (2004) 4196–4204.

[24] W.W Wang, Y.J Zhu, L.X Yang, Adv Funct Mater 17 (2007) 59–64.

[25] E.S Jang, J.H Won, S.J Hwang, J.H Choy, Adv Mater 18 (2006) 3309–3312.

[26] N Kislov, J Lahiri, H Verma, D.Y Goswami, E Stefanakos, M Batzill, Langmuir 25 (2009) 3310–3315.

Fig 8 Photocatalytic degradation of MB in the presence of (A) Sample-Fig 1a, (B)

Sample-Fig 1b, (C) Sample-Fig 1c, (D) Sample-Fig 1d C0 and C represent initial MB

concentration and evolution of MB concentration during photodegradation,

respectively.

Ngày đăng: 06/05/2014, 13:23

TỪ KHÓA LIÊN QUAN