TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI TOÁN SỬ THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hìn[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI TOÁN SỬ THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 2. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
3
Câu 4. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 5. Cho lăng trụ đứng ABC.A0B0C0 có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. a
3√
6
3√
3√ 6
2a3√ 6
3 .
Câu 6. Khối đa diện đều loại {4; 3} có số mặt
Câu 7. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 1
ln 10. B f
0 (0)= ln 10 C f0(0)= 1 D f0(0)= 10
Câu 8. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 9. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 10. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = R \ {1} B. D = R C. D = (−∞; 1) D. D = (1; +∞)
Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3
2a3√3
4a3√3
a3
6 .
Câu 12. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
3√
3
4a3√ 3
a3
√ 3
5a3√ 3
3 .
Câu 13. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
2.
Trang 2Câu 14 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 15. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Một tứ diện đều và bốn hình chóp tam giác đều.
B Năm hình chóp tam giác đều, không có tứ diện đều.
C Năm tứ diện đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 16. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3, m = 4 B −3 ≤ m ≤ 4 C m= 4 D m= −3
Câu 17. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = 1
e, m = 0 B M= e, m = 1 C M = e, m = 0 D M = e, m = 1
e.
Câu 18. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
A Không có câu nào
sai
Câu 19. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 20. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a
√ 6
a
√ 6
a
√ 3
2 .
Câu 21. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 22. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 23. Dãy số nào sau đây có giới hạn là 0?
A. −5
3
!n
3
!n
3
!n
e
!n
Trang 3Câu 24. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 25. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tứ giác và một hình chóp ngũ giác.
B Hai hình chóp tam giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Hai hình chóp tứ giác.
Câu 26. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A 6
√
√ 3
20√3
√ 3
Câu 27. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
5
3√
3√ 15
a3√ 6
3 .
Câu 28. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√
Câu 29. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 30. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 31. [1] Đạo hàm của làm số y = log x là
A y0 = 1
0 = ln 10
0 = 1
xln 10. D.
1
10 ln x.
Câu 32. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A a
√
√ 2
√
√ 2
2 .
Câu 33. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A. 7
-2
Câu 34. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 35. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Trang 4Câu 36. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 37. Tính lim n −1
n2+ 2
Câu 38. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 39. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 40. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 41. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 42. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
√ 3
3
4.
Câu 43. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey+ 1 C xy0 = −ey
− 1
Câu 44. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√
√ 2
a√2
3 .
Câu 45. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
b2+ c2
√
a2+ b2+ c2 B. b
√
a2+ c2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. c
√
a2+ b2
√
a2+ b2+ c2
Câu 47. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 48. Khối chóp ngũ giác có số cạnh là
Câu 49. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
Câu 50. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
1
2.
Câu 51. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
Trang 5Câu 52. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 53. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 54. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 55. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 56. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A − 1
1
1
e2
Câu 57. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 58. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 59. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 60. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 61 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 62. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ [a; b], ta có F0(x)= f (x)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 63. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A 1+ 2 sin 2x B −1+ 2 sin 2x C 1 − sin 2x D −1+ sin x cos x
Câu 64. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 65. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2
!
2;+∞
!
2
!
Câu 66. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 67. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 68. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
a
a√3
2 .
Trang 6Câu 69. [12215d] Tìm m để phương trình 4x+ 1−x2 − 4.2x+ 1−x2 − 3m+ 4 = 0 có nghiệm
3
3
4.
Câu 70. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
a
5a
8a
9 .
Câu 71. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 3 B T = e + 2
e. C T = 4 + 2
e. D T = e + 1
Câu 72. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 73. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 74. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
Câu 75. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√2
a3√2
a3√2
2 .
Câu 76. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 77. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
23
68.
Câu 78. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 79. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
3 C V = 3a3
√ 3
2 . D V = a3
√ 3
2 .
Câu 80. [1] Biết log6 √a= 2 thì log6abằng
Câu 81. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 82. Khối lập phương thuộc loại
Trang 7Câu 83. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A. a
√
6
√
√
√ 6
Câu 84. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 85. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
4.
Câu 86. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
Câu 87. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 88. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3
Câu 89. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 90. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 91 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
1
xdx= ln |x| + C, C là hằng số B.
Z
dx = x + C, C là hằng số
C.
Z
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 92. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 93. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 log 2x
x3 C y0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 2x3ln 10.
Câu 94. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Tăng lên (n − 1) lần B Tăng lên n lần C Không thay đổi D Giảm đi n lần.
Câu 95. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 96. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 97. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Trang 8Câu 98. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. √ 1
2
√
a2+ b2 D. √ ab
a2+ b2
Câu 99. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = 100.1, 03
(1, 12)3− 1 triệu.
C m = 100.(1, 01)3
(1, 01)3− 1 triệu.
Câu 100. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 101. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 102. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 103. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3+3x2+(m−1)x+2m−3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 104. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 5
7
Câu 105. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 106. Dãy số nào có giới hạn bằng 0?
A un= 6
5
!n
B un = n3− 3n
n+ 1 . C un = −2
3
!n D un = n2
− 4n
Câu 107. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (II) đúng C Cả hai đều đúng D Chỉ có (I) đúng.
Câu 108. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 109 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
B Cả ba đáp án trên.
Trang 9C F(x)= x2
là một nguyên hàm của hàm số f (x)= 2x
D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 110. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2)= m có nghiệm thực
x ≥1
Câu 111. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ tứ giác đều là hình lập phương.
C Hình lăng trụ đứng là hình lăng trụ đều.
D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 112. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 113. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 114. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
3
a3√ 3
3 .
Câu 115. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R
Câu 116. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5
bằng
Câu 117. Khối đa diện đều loại {3; 3} có số cạnh
Câu 118. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 119. [4-1213d] Cho hai hàm số y= x −3
x −2 + x −2
x −1 + x −1
x+ 1 và y= |x + 2| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 120. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
5
2.
Câu 121. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 122. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Trang 10Câu 123 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
Câu 124. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
2a√57
a√57
19 .
Câu 125. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|
√
√ 3
Câu 126. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3
− 2x2+ 3x − 1
Câu 127. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 128. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 129. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun
vn bằng
Câu 130. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. ab
a2+ b2 C. √ ab
2
√
a2+ b2
HẾT