1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (524)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,75 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→1 x3 − 1 x − 1 A 0 B +∞ C −∞ D 3 Câu 2 [2 c] Gi[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Tính lim

x→1

x3− 1

x −1

Câu 2. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Câu 3. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t) = −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 4. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 5. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

13 .

Câu 6. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 7. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

2a3

√ 3

a3

√ 3

3√ 3

Câu 8. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 9. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 10. Tính lim 5

n+ 3

Câu 11. Khối chóp ngũ giác có số cạnh là

Câu 12. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 5

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 13. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 14. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Trang 2

A (2;+∞) B (−∞; 2] C [2;+∞) D (−∞; 2).

Câu 15. [1] Đạo hàm của làm số y = log x là

0 = 1

0 = ln 10

0 = 1

xln 10.

Câu 16. Tứ diện đều thuộc loại

Câu 17. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 18. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 19. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

2+ (y + 1)2+ (z + 3)2= 9

4.

C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

2+ (y − 1)2+ (z − 3)2= 9

4.

Câu 20. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = −ey

− 1

Câu 21. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 22. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h.

Câu 23. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 24. Khối đa diện đều loại {3; 3} có số mặt

Câu 25. Khối đa diện đều loại {3; 3} có số cạnh

Câu 26. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 3ac

3b+ 2ac

3b+ 2ac

c+ 2 .

Câu 27. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 28. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A a

√ 6

√ 6

Trang 3

Câu 29. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.

A 3

Câu 30. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối tứ diện đều C Khối 12 mặt đều D Khối lập phương.

Câu 31 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

C.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 32. Tính lim

x→2

x+ 2

x bằng?

Câu 33. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 34. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 35. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

√ 2

√ 2

Câu 36. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 37. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

36 .

Câu 38. Dãy số nào sau đây có giới hạn khác 0?

A. √1

n+ 1

sin n

1

n.

Câu 39. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

a

√ 57

√ 57

19 .

Câu 40. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

Trang 4

Câu 41. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 42. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 43. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x +

1

x. C y= x3

− 3x D y= x4

− 2x+ 1

Câu 44. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1+ 2e

4e+ 2. C m=

1 − 2e 4e+ 2. D m=

1 − 2e

4 − 2e.

Câu 45. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành

A Năm hình chóp tam giác đều, không có tứ diện đều.

B Bốn tứ diện đều và một hình chóp tam giác đều.

C Một tứ diện đều và bốn hình chóp tam giác đều.

D Năm tứ diện đều.

Câu 46. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 47. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

√ 2

Câu 48. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 49. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 50. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 51. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. 2a

3

a

√ 3

√ 3

3 .

Câu 52. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 53. [2] Cho hàm số f (x)= x ln2

x Giá trị f0(e) bằng

A. 2

Câu 54. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1

2x3ln 10. D y

0 = 1 − 2 ln 2x

x3ln 10 .

Trang 5

Câu 55. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 56. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 9

11+ 19

9 . D Pmin= 2

11 − 3

Câu 57. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 58. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 59. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 60. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 61. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A −1

1

Câu 62. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

B.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

D.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

Câu 63. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 64. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên sai B Chỉ có (I) đúng C Cả hai câu trên đúng D Chỉ có (II) đúng.

Trang 6

Câu 65. Tính giới hạn lim

x→ +∞

2x+ 1

x+ 1

A. 1

Câu 66. Tính giới hạn lim2n+ 1

3n+ 2

2

1

2.

Câu 67. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 68. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 69. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

2a3√ 3

4a3√ 3

2a3

3 .

Câu 70. Tính lim n −1

n2+ 2

Câu 71. Hàm số y= x + 1

x có giá trị cực đại là

Câu 72. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

2

3.

Câu 73. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 74 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

B Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

C Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

D Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

Câu 75. Khối lập phương thuộc loại

Câu 76. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

Câu 77. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 1) B A0(−3; −3; −3) C A0(−3; −3; 3) D A0(−3; 3; 3)

Trang 7

Câu 78. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 79. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 80. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 81. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là −

√ 3

C Phần thực là

2, phần ảo là 1 −

2 − 1, phần ảo là

√ 3

Câu 82. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A −1

1 2e.

Câu 83. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

a

a

√ 3

2 .

Câu 84. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

5

a3√ 3

a3√ 5

a3√ 5

4 .

Câu 85. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C Cả ba câu trên đều sai.

D F(x)= G(x) trên khoảng (a; b)

Câu 86 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C.

Z

f(x)dx

!0

= f (x)

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Câu 87. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

loga2. B log2a= loga2 C log2a= 1

log2a. D log2a= − loga2

Câu 88. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 89. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Trang 8

Câu 90. Cho hàm số y= x3

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng −∞;1

3

! B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng 1

3; 1

! D Hàm số đồng biến trên khoảng 1

3; 1

!

Câu 91. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

8a3√3

8a3√3

4a3√3

9 .

Câu 92. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 93. [2] Cho hàm số y= log3(3x+ x), biết y0

(1)= a

4 + 1

bln 3, với a, b ∈ Z Giá trị của a + b là

Câu 94. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0

B0C0 là

A. a

3

a3√ 3

3√ 3

6 .

Câu 95. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

2 .

Câu 96. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 97. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

A. 1

2√e.

Câu 98. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?

Câu 99. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 100. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 11

9

Câu 101. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 102. Khối đa diện đều loại {4; 3} có số cạnh

Câu 103. Khối đa diện đều loại {3; 5} có số mặt

Câu 104. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

Trang 9

tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 105. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 106. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 107. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√6

a3√6

a3√6

24 .

Câu 108 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

xαdx= α + 1xα+1 + C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z 1

xdx= ln |x| + C, C là hằng số

Câu 109. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 110. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

2

a3√3

2√

3√ 3

12 .

Câu 111. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

1

4.

Câu 112. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 113. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 114 Hình nào trong các hình sau đây không là khối đa diện?

Câu 115. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2

− 2 ln x trên [e−1; e] là

A M = e−2+ 1; m = 1 B M = e−2− 2; m= 1

C M = e2− 2; m = e−2+ 2 D M = e−2+ 2; m = 1

Câu 116. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 6

6 . B V = πa3

√ 3

6 . C V = πa3

√ 3

3 . D V = πa3

√ 3

2 .

Câu 117. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

a2+ b2 B. √ ab

2√a2+ b2 D. √ 1

a2+ b2

Trang 10

Câu 118. Khối đa diện đều loại {4; 3} có số mặt

Câu 119. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 120. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 23

1728

1079

1637

4913.

Câu 121. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 122. [1] Tập xác định của hàm số y= 2x−1là

A. D = R B. D = R \ {1} C. D = (0; +∞) D. D = R \ {0}

Câu 123. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Một khối chóp tam giác, một khối chóp tứ giác.

D Hai khối chóp tam giác.

Câu 124. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 125. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

A. 3a

Câu 126. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

5a

8a

2a

9 .

Câu 127. Tìm m để hàm số y= mx −4

x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 128. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

√ 2

Câu 129. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 20 mặt đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 130. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

2 .

HẾT

Ngày đăng: 06/04/2023, 23:36

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN